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This paper argues that a clear understanding of the stochastic growth mode1 can best be achieved by 
working out an approximate analytical solution. The proposed solution method replaces the true 
budget constraints and Euler equations of economic agents with loglinear approximations. The 
mode1 then becomes a system of loglinear expectational difference equations, which can be solved by 
the method of undetermined coefficients. The paper uses this technique to study shocks to techno- 
logy and shocks to government spending financed by lump-sum or distortionary taxation. It 
emphasizes that the persistence of shocks is an important determinant of their macroeconomic 
effects. 
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1. Introduction 

During the last ten years, the stochastic growth model has become a work- 
horse for macroeconomic analysis. Perhaps the most forceful claims for the 
model have been made by Prescott (1986), who describes it as ‘a paradigm for 
macro analysis ~ analogous to the supply and demand construct of price theory’. 
He also refers to the predictions of the model as those of ‘standard economic 
theory’. In Prescott’s view the shocks to the economy are random variations in 
the rate of technical progress, but the usefulness of the stochastic growth model 
does not depend on this view of the sources of business cycles. Other authors 
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have subjected the model to other types of shocks, for example government 
spending [Aiyagari, Christiano, and Eichenbaum (1992) Baxter and King 
(1993) Christian0 and Eichenbaum (1992)], distortionary taxation [Baxter and 
King (1993) Braun (1993), Greenwood and Huffman (1991) McGrattan (1993)], 
and nominal shocks in the presence of sticky nominal wages and prices [King 
(1991)] or liquidity effects [Christian0 and Eichenbaum (1991)]. The stochastic 
growth model enables one to track the dynamic effects of any shock; in this sense 
it is indeed a paradigm for macroeconomics. 

Despite the wide popularity of the stochastic growth model, there is no 
generally agreed procedure for solving it. The difficulty is the fundamental 
nonlinearity that arises from the interaction between multiplicative elements, 
such as CobbbDouglas production with labor and capital, and additive 
elements, such as capital accumulation and depreciation. This nonlinearity 
disappears only in the unrealistic special case where capital depreciates fully in 
a single period and agents have log utility [Long and Plosser (1983) McCallum 
(1989)]. In this case the model becomes loglinear and can be solved analytically. 
In all other cases, some approximate solution method is required. 

In a seminal contribution, Kydland and Prescott (1982) proposed taking 
a linear-quadratic approximation to the true model around a steady-state 
growth path. Christian0 (1988) and King, Plosser, and Rebel0 (1987) have used 
a loglinear-quadratic approximation instead. This has at least two advantages: 
First, it delivers the correct solution in the special case that can be solved 
exactly, and second, it gives a simpler relation between the parameters of the 
underlying model and the parameters that appear in the approximate solution. 
Many other methods are also available, and have recently been reviewed and 
compared by Taylor and Uhlig (1990). Most of these methods are heavily 
numerical rather than analytical. While computational costs are no longer an 
important objection to numerical methods, the methods are often mysterious to 
the noninitiate and seem to bear little relation to familiar techniques for solving 
linear rational expectations models. A typical paper in the real business cycle 
literature states the model, then moves directly to a discussion of the properties 
of the solution without giving the reader the opportunity to understand the 
mechanism giving rise to these properties.’ 

In this paper I propose a simple analytical approach to the stochastic growth 
model. I start with the model’s Euler equations and budget constraints; 
as Baxter (1991) has pointed out, this makes the approach applicable to 
models in which the competitive equilibrium is not Pareto optimal. Next 
I loglinearize the Euler equations and budget constraints in the manner of 

‘The problem is also illustrated by Chapter 7 of Blanchard and Fischer (1989). Quite appropriate- 
ly, this textbook confines itself to small macro models that can be solved analytically; lacking an 
appropriate solution method, Chapter 7 fails to convey the richness of the stochastic growth model 
or the real business cycle literature. 
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Campbell and Shiller (1988) and Campbell (1993). This transforms the model 
into a system of expectational difference equations in the capital stock and the 
exogenous variables driving the economy (here taken to be technology or 
government spending). I solve this system analytically using the method of 
undetermined coefficients. 

There are important similarities, but also important differences, between 
this approach and the work of Christian0 (1988) and King, Plosser, and 
Rebel0 (1987). Christian0 (1988) first substitutes all budget constraints into 
the objective function to set the model up as a calculus of variations problem. 
He then takes a second-order Taylor approximation in logs of the vari- 
ables. Despite Christiano’s use of a higher-order approximation, in a homo- 
skedastic setting his method yields the same solution as the one obtained in 
this paper. The reason is that only expectations of second-order terms appear 
in Christiano’s solution, and these expectations are constant if the model 
is homoskedastic. It follows that the evidence of Taylor and Uhlig (1990) 
and Christian0 (1989) on numerical accuracy applies to the method of this 
paper as well. King, Plosser, and Rebel0 (1987) write the model’s first- 
order conditions using the Lagrange multiplier for the budget constraint as 
a state variable, and then loglinearize to obtain a system of expectational 
difference equations in the capital stock and the Lagrange multiplier. This is 
similar to the approach here, except that I use the capital stock and the 
exogenous driving variables as the state variables. This enables me to derive 
more directly the responses of endogenous variables to shocks in exogenous 
variables. 

Perhaps the most important difference between this paper and previous work 
is that I solve the system of loglinear difference equations analytically in order to 
make the mechanics of the solution as transparent as possible. King, Plosser, 
and Rebel0 (1987) instead solve the system using a general numerical method 
which can be more easily generalized to models with multiple state variables, but 
which obscures the simplicity of the basic stochastic growth model. 

To illustrate the usefulness of the approach, this paper studies a number of 
issues in real business cycle analysis. Section 2 studies the effect of technology 
shocks in a model with fixed labor supply, showing how the insights of the 
literature on the permanent income hypothesis can be embedded in the stochas- 
tic growth model. Section 3 studies two alternative models of variable labor 
supply. In both sections the analytical solution method clarifies how the proper- 
ties of the model depend on the parameters of the utility function and the 
persistence of technology shocks. As an illustration of the importance of persist- 
ence, the paper studies a slowdown in productivity growth of the type that seems 
to have occurred in the mid-1970’s. Section 4 introduces shocks to government 
spending, again emphasizing the importance of persistence. This section also 
compares lump-sum taxation to gross output taxation as a means of govern- 
ment finance. Section 5 concludes. 
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2. A model with fixed labor supply 

2. I. Specljication of the model 

The first equation of the model is a standard Cobb-Douglas production 
function. Using the notation Y, for output, A, for technology, and K, for capital, 
and normalizing labor input N, = 1, the production function is 

Y, = (A,&)” K:-” = A;K:-“. (1) 

The second equation of the model describes the capital accumulation process: 

K t+l = (1 - @K, + Y, - C,, (4 

where 6 is the depreciation rate and C, is consumption. Finally, there is 
a representative agent who maximizes the objective function 

(3) 

This time-separable power utility function with coefficient of relative risk aver- 
sion y becomes the log utility function when y = 1. I define the elasticity of 
intertemporal substitution o s l/y. 

I also define a variable R,, i, the gross rate of return on a one-period 
investment in capital, which equals the marginal product of capital in produc- 
tion plus undepreciated capital: 

R r+lS(l-a) 
( 1 

* 3L + (1 - 6). 
r+1 

The first-order condition for optimal choice, given the objective function (3) and 
the constraints (1) and (2) can then be written in the simple form 

C,y = flE,{C;;/, R,,,}. (5) 

2.2. Steady-state growth 

I now look for a steady-state or balanced growth path of this model, in which 
technology, capital, output, and consumption all grow at a constant common 
rate. I use the notation G for this growth rate: G = A,, 1/A,. In steady state the 
gross rate of return on capital R,, 1 becomes a constant R, while the first-order 
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condition (5) becomes 

GY = /?R, 

or in logs (denoted by lower-case letters), 

log(B) + r 
lJ= = alog + cr. 

7 
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(6) 

This is the familiar condition relating the equilibrium growth rate of consump- 
tion to the intertemporal elasticity of substitution times the real interest rate in 
a model with power utility. 

The definition of R (4) and the first-order condition (6) imply that the 
technology-capital ratio is a constant given by 

The first equality in (8) shows that a higher rate of technology growth leads to 
a lower capital stock for a given level of technology. The reason is that in steady 
state faster technology growth must be accompanied by faster consumption 
growth. Agents will accept a steeper consumption path only if the rate of return 
on capital is higher, which requires a lower capital stock. The second approxim- 
ate equality in (8) comes from setting GY/fi = R E 1 + r. 

More generally, one can solve for various ratios of variables that will be 
constant along a steady-state growth path. I express these ratios in terms of four 
underlying parameters: g, the log technology growth rate; r, the log real return 
on capital; a, the exponent on labor and technology in the production function, 
or equivalently labor’s share of output; and 6, the rate of capital depreciation. 
For purposes of ‘calibration’ in a quarterly model, benchmark values for these 
parameters might be g = 0.005 (2% at an annual rate), r = 0.015 (6% at an 
annual rate), SI = 0.667, and 6 = 0.025 (10% at an annual rate). Note that the 
rate of time preference /? and the coefficient of risk aversion y need not be 
specified, although (7) defines pairs of values for /3 and y that are consistent with 
the assumed values of g and r. 

Using the production function (1) and the formula for the technology-capital 
ratio (8), we have that the steady-state outputtcapital ratio is a constant, 

Y A” 0 r+S _= _ 
K K ==l- (9) 
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Similar reasoning shows that in steady state the consumptionoutput ratio is 
a constant, 

c C/K 

r=YIK= 
* _ (1 - d(cl + 6) 

r+6 
(10) 

At the benchmark parameter values given above, the steady-state output- 
capital ratio Y/K = 0.118 (0.472 at an annual rate) and the steady-state 
consumptionoutput ratio C/Y = 0.745. These are fairly reasonable values.’ 

2.3. A loglinear model offluctuations 

Outside steady state, the real business cycle model is a system of nonlinear 
equations in the logs of technology, capital, output, and consumption. Nonlin- 
earities are caused by incomplete capital depreciation [S < 1 in (2) and (4)] and 
by time variation in the consumption-output ratio. Thus exact analytical 
solution of the model is only possible in the unrealistic special case where capital 
depreciates fully in one period and where agents have log utility so the consump- 
tion-output ratio is constant [Long and Plosser (1983), McCallum (1989)]. The 
strategy of this section is instead to seek an approximate analytical solution by 
transforming the model into a system of approximate loglinear difference 
equations. For simplicity, all constant terms will be suppressed in the approxi- 
mate model; the variables in the system can be thought of as zero-mean 
deviations from the steady-state growth path. 

The Cobb-Douglas production function (1) needs no approximation; it can 
be written in loglinear form as 

y, = aa, + (1 - cc)kf, (11) 

where as always lower-case letters are used for log variables. 
The capital accumulation equation (2) is unfortunately not loglinear. Dividing 

by K, and taking logs, (2) becomes 

log[ev(&+l) - (1 - 611 = y, - k, + log[l - exp(c, - y,)]. (12) 

The strategy proposed here is to take first-order Taylor approximations of the 
functions on the left- and right-hand sides of (12) around their steady-state 
values, and then to substitute out yr using the log production function (11). 

*Simon (1990) briefly surveys alternative estimates of these ratios. 



Calculations summarized in appendix A yield the following loglinear approxi- 
mate accumulation equation: 

k t+t =: RI k, + i2ut + (1 - ii, - A2)ct, (13) 

where 

~~_!_+ a(r + 6) 
1 

1 +g’ i”2=(I-R)(l+g). 
(14) 

At the benchmark parameter values discussed above, 2, = 1.01, & = 0.08, and 
1 - i, - & = - 0.09. To understand these coefficients, one should note that 
1 - 2, - & = - (C/Y)(~/~)(l + g)-’ = - (0.1~8)(0.745)(l.005)~1, the nega- 
tive of the steady-state ratio of this period’s consumption to next periods capital 
stock. A $1 increase in consumption this period lowers next period’s capital 
stock by $1, but a 1% increase in consumption this period lowers next period’s 
capital stock by only 0.09% because in steady state one period’s consumption is 
only 0.09 times as big as the next period’s capital stock. 

I now turn to the general first-order condition (5). If the variables on the 
right-hand side of (5) are jointly lognormal and homoskedastic, then one can 
rewrite the first-order condition in log form as E,Ac,+ 1 = rrE,r,+ r, where 
rr+ 1 = log{&+ If.3 From the definition of the gross return on capital R,, 1 in (4), 
the log return r, + 1 is a nonlinear function of the log technology-capital ratio. 
The loglinear approximation of this function (calculated in appendix A) is 

where 

/7 

b3 
~ 4r + 4 

l+r . 

At the benchmark parameter values discussed above, ,I3 = 0.03. This coeffi- 
cient is extremely small. One way to understand this fact is to note that changes 
in technology have only small proportional effects on the one-period return 
on capital because capital depreciates only slowly, so most of the return is 
undepreciated capital rather than marginal output from the Cobb-Douglas 

3This uses the standard formula for the expectation of a lognormal random variable X,+,: 
log(E,X,+,) 2 E,log(X,+,) + +var,log(XC+l ) Note that the assumption that the variables in the 
first-order condition are jointly lognormal and homoskedastic is consistent with a lognormal 
homoskedastic productivity shock and the approximations proposed here to solve the model. 



production function. Alternatively, when 6 is negligible (which it is not for 
the benchmark parameter values considered here), one could note that 
rzR-I z (1 - a) (A/K)“. In this case a 1% increase in the technology-capital 
ratio raises r by about a%. But c& of r is only c(r percentage points. 

The representative agent’s log first-order condition now becomes 

To close the model, it only remains to specify a process for the technology shock 
a,. I assume that technology follows a first-order autoregressive or AR(l) 
process: 

The AR(l) coefficient d, measures the persistence of technology shocks, with the 
extreme case of Cp = 1 being a random walk for technology.4 

Eqs. (I 3), (17), and (18) form a system of loglinear expectational difference 
equations in technology, capital, and consumption. The parameters of these 
equations include /il, 3+ and i, (which are functions of the underlying growth 
parameters, r, y, cx, and 6), the intertemporal elasticity of substitution cr, and 
the AR(l) coefficient # that measures the persistence of technology shocks. 
The ‘calibration’ approach to real business cycle analysis takes &, ilz, and 
i., as known, and searches for values of (T and 4 (and a variance for the 
technology innovation) to match the moments of observed macroeconomic time 
series. 

Eqs. (13), (17), and (18) can be solved using any of a number of standard 
methods. Here I use the method of undetermined coefficients. I adopt the 
notation qVX for the partial elasticity of y with respect to x, and guess that log 
consumption takes the form 

where qck and llcn are unknown but assumed to be constant. I verify this guess by 
finding values of qck and lffn that satisfy the restrictions of the approximate 
loglinear model. 

“Eq. (18) suppresses a deterministic technology trend growing at rate g, since all variables in this 
section are measured as deviations from the steady-state growth path. 
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The conjectured solution can be written in terms of the capital stock, using 

(13), as 

k,+ 1 = vkkkt + Y]kaar, (20) 

where 

Also, substituting the conjectured solution into (17) I obtain 

Next I substitute (20) and (21) into (22) and use the fact that E,a,+ 1 = $a,. The 
result is an equation in only two state variables, the capital stock and the level of 
technology: 

&k[il - 1 +  (1 - AI - b)r?cklk, 

- oi,[3.2 + (1 - 3., - /lz)yI,,]a,. (23) 

To solve this equation I first equate coefficients on k, to find qck, and then equate 
coefficients on a, to find yCO, given q,k. 

Equating coefficients on k, gives the quadratic equation 

(24) 

where 

Q, e j., - 1 + gje3(1 - i., - &), (25) 

The quadratic formula gives two solutions to (24). With the benchmark set of 
parameters, one of these is positive. Eq. (13) with j_, > 1, shows that qCk must be 
positive if the steady state is to be locally stable. Hence the positive solution is 
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the appropriate one: 

1 
qck = 2Q2 

Note that y],k depends only on CJ and the j_ parameters, and is invariant to the 
persistence of the technology shock as measured by 4. Solution of the model is 
completed by finding q,, as 

(27) 

2.5. Time-series implications 

The consumption elasticities qCk and y_,, and the capital elasticities &k and 
?& derived from them, determine the dynamic behavior of the economy. Using 
lag operator notation, eq. (20) gives the capital stock as 

k f+l 

Rewriting eq. (18) in the same notation, the technology process is 

1 
a, = 

(1 - (PLf’. 

(28) 

(29) 

These two equations imply that the capital stock follows an AR(2) process: 

k 
‘+l = (1 - II,,:;;1 - &Lf,’ 

(30) 

TWO points are worth noting about this expression. First, the roots of the capital 
stock process are qkk and 4, which are both real numbers. Thus, unlike the 
multiplieraccelerator model [Samuelson (1939)], the real business cycle model 
does not produce oscillating impulse responses. Second, the shock to capital at 
time t + 1 is the technology shock realized at time t. The capital stock is known 
one period in advance because it is determined by lagged investment and by 
a nonstochastic depreciation rate. 

The stochastic processes for output and consumption are somewhat more 
complicated than the process for capital. The log production function (11) 
determines output as y, = (1 - cr)k, + CXU,. In the fixed-labor model the partial 
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elasticities of output with respect to capital and technology are trivially (1 - c() 
and CC. Substituting (29) and (30) into this expression, I obtain 

(31) 

The first equality in (31) shows that technological shocks affect output both 
directly and indirectly through capital accumulation. The second equality shows 
that the sum of the two effects is an ARMA(2, 1) process for output. 

The solution for consumption is obtained by substituting (29) and (30) into the 
expression c, = qckkt + q,,a,. This too is an ARMA(2, 1) process: 

&kVkiJ 
cr = (1 - VkkL)(l - f$Lf’+ (1 Ic;L$r 

= llca + (%kVka - b?kk)LE 
(1 - )?kkL)(l - 4L) f 

(32) 

The capital, output, and consumption processes all have the same autoregres- 
slve roots vkk and 4.5 

2.6. Interpretation of the dusticities, and some special uses 

Table 1 reports numerical values of the elasticities ?I,~, qca and qkk, qko, for the 
benchmark parameters discussed above and for various choices of the para- 
meters CJ and 4. 0 is set equal to 0,0.2, 1, 5, and x to cover the whole range of 
possibilities. These choices for r~ correspond to values for the discount factor p of 
rj , 1.010, 0.990, 0.986, and 0.985, respectively, since eq. (7) implies a discount 

factor greater than 1 if r~ is less than y/r = 1/3.6 The persistence parameter 4 is 
set equal to 0, 0.5, 0.95, and 1, again to cover the whole range of possibilities. 
Variation in C#I has more important effects on the model when $J is close to 1, 
which is why both C/J = 0.95 and C$ = 1 are included. 

5These results can easily be generalized for more complicated technology processes. For example 
an AR(p) technology process generates an ARMA(p + I, p ~ 1) for the capital stock and an 
ARMA(p + 1,~) for output, consumption. and the real interest rate. All these variables have 
common autoregressive roots. 

6Kocherlakota (1988) argues for a small value of CT and a time discount factor greater than 1. 
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Table 1 

Consumption and capital elasticities for the fixed-labor model with technology shocks.” 

4 0 0.2 1 5 J;I 

0.00 0.11, 0.01 0.30, 0.02 0.59, 0.05 1.21, 0.10 1 I .30, 0.89 
1.00, 0.08 0.98, 0.08 0.96, 0.07 0.90, 0.07 0.00, 0.00 

- 0.50 0.11, 0.02 0.30, 0.04 0.59, 0.06 1.21, 0.06 11.30, 4.69 
1.00, 0.08 0.98, 0.07 0.96, 0.07 0.90, 0.07 0.00, 0.50 

- 0.95 0.11, 0.15 0.30, 0.25 0.59, 0.23 1.21, - 0.12 11.30, 9.70 
1.00, 0.07 0.98, 0.06 0.96, 0.06 0.90, 0.09 0.00, 0.95 

1.00 0.11, 0.89 0.30, 0.70 0.59, 0.41 1.21, - 0.21 11.30, - 10.30 
1.00, 0.00 0.98, 0.02 0.96, 0.04 0.90, 0.10 0.00, 1.00 

au is the intertemporal elasticity of substitution and rj is the persistence of the AR(l) technology 
shock. The model is specified in eqs. (1 1) (13) (17) and (18) in the text. The top two numbers in each 

group are vck. vcO, where qck is the elasticity of consumption with respect to the capital stock and Us-. is 
the elasticity of consumption with respect to technology. The bottom two numbers in each group are 
qkt, qr-.. where qkk is the elasticity of next period’s capital stock with respect to this period’s capital 
stock and qkO is the elasticity of next periods capital stock with respect to this period’s technology. 

Several points are worth noting. First, the coefficient qck does not depend on 
the persistence of technology shocks C#J but is increasing in the elasticity of 
intertemporal substitution C. To understand this, recall that qck measures the 
effect on current consumption of an increase in capital with a fixed level of 
technology. Such an increase has a positive income effect on current consump- 
tion that does not depend on the value of 0. It also lowers the real interest rate, 
creating a positive substitution effect on current consumption that is stronger 
the greater the parameter 0‘. 

Second, the coefficient vkk also does not depend on 4 but declines with 0. This 
follows from the fact that qkk = 3.r + (1 - A1 - j.2)q,k. In a model with non- 
stochastic technology, 1 - qkk measures the rate of convergence to steady state 
as studied by Barro and Sala-i-Martin (1992) among others. Barro and Sala- 
i-Martin find that empirically 1 - qkk (which they call fi) equals about 0.02 at an 
annual rate or 0.005 at a quarterly rate. Table 1 shows that 1 - qkk can be this 
small with the benchmark parameter values if the elasticity of intertemporal 
substitution cr is very small (between 0 and 0.2). Barro and Sala-i-Martin 
mention this possibility, but emphasize instead the fact that a smaller labor 
share c( (corresponding to a broader concept of capital) can reduce the conver- 
gence rate. 

Third, the coefficient yCa is increasing in persistence 4 for low values of CJ, but 
decreasing for high values of 0. To understand this, recall that qCa measures the 
effect on current consumption of an increase in technology with a fixed stock of 
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capital. At low values of r~, substitution effects are weak and the agent responds 
primarily to income effects. A technology shock has an income effect which is 
stronger when the shock is more persistent, hence rlca increases with 4. At high 
values of g, substitution effects are important. A purely temporary technology 
shock (4 = 0) does not directly affect the real interest rate; it is like a windfall 
gain in current output. The agent is deterred from saving this windfall by the 
increase in the capital stock and reduction in the interest rate that would result, 
hence qca is large. A persistent technology shock, on the other hand, increases the 
real interest rate today and in the future. This encourages saving, making 
v. small or even negative. 

It is worth discussing explicitly some special cases of the general model. The 
case 4 = 1, in which log technology follows a random walk, is often assumed in 
the literature [Christian0 and Eichenbaum (1992), King, Plosser, Stock, and 
Watson (1991), Prescott (1986)]. In this case the model solution has the property 

that vck + Vca = 1 and qkk + Y]ka = 1. One can then show that although log 
technology, capital, output, and consumption follow unit root processes, they 
are cointegrated because the difference between any two of them is stationary. 
To see this for log technology and capital, note that (32) gives the stochastic 
process for i., times the log technology-capital ratio. When qkk + vka = I, the 
unit autoregressive root cancels with a unit moving average root and we have an 
AR( 1) for the log technology-capital ratio with coefficient qkk. The real interest 
rate, of course, follows the same process. 

Another interesting special case has 0 = m or equivalently 7 = 0, so that the 
representative agent is risk-neutral. In this case the model solution simplifies 
considerably because the quadratic coefficient Q2 in eq. (24) becomes negligibly 
small relative to the other coefficients. (24) becomes a linear equation that can be 
solved to obtain vck = - Al/(1 - i, - &) = 11.3, the steady-state value of the 
capital-consumption ratio. Risk neutrality fixes the ex unte real interest rate, 
and hence the level of capital for a given level of technology. With fixed 
technology any increase in capital is simply consumed, so the derivative of 
consumption with respect to capital is 1 and the elasticity qck is the capi- 
tal-consumption ratio. It follows that an increase in capital today does not 
increase capital tomorrow, so qkk = 0. Finally, qku = 4, because the capital stock 
changes proportionally with the level of technology. Capital is an AR(l) process 
with coefficient $, while output and consumption are ARMA(I, 1) processes. 

The opposite extreme case has G = 0. Here intertemporal substitution is 
entirely absent from the model. Again the solution simplifies because the 
intercept Q. = 0 in the quadratic eq. (24) for q&, which therefore collapses to 
a linear equation. We have vck = (1 - J1)/(l - /1, - 3.,) = 0.11. In this case an 
increase in capital, with fixed technology, stimulates only as much extra con- 
sumption as can be permanently sustained. The derivative of consumption with 
respect to capital is the annuity value of a unit increase in capital, 
- (1 - j.,)/il = (r - g)/( 1 + r), and the elasticity is this derivative times the 



steady-state capital-consumption ratio. It follows that a unit increase in capital 
today generates a unit increase in capital tomorrow, so qkk = 1. 

It is straightforward to show that when cr = 0 log consumption follows 
a random walk, while log output and log capital follow unit root processes 
cointegrated with log consumption. This model differs from the Cp = 1 case in 
that the stationary linear combination of log consumption and log capital is not 
the log ratio c, - k,, but is instead c, - qckpr = c, - 0.11 k,. An increase in 
capital does not lead to a proportional increase in consumption in the long run, 
because the marginal product of capital is less than the average product. 
Associated with this, there are some technical difficulties with the G = 0 model. 
First, eq. (7) implies that as 0 approaches 0, the time discount factor must 
increase to infinity to maintain a finite steady-state interest rate. Second, when 
0 = 0 and technology is stationary (&, < t), the log technology-capital ratio is 
nonstationary. This invalidates the loglinear approximations used to obtain the 
solution. Thus strictly speaking the discussion above applies only to very small 
but nonzero values of cr. 

Despite these problems, the stochastic growth model with g = 0 deserves 
attention because it is a general equilibrium version of the permanent income 
model of Hall (1978) and Flavin (198 1).7 In this model temporary technology 
shocks cause temporary variation in output but not in consumption, so output 
is more variable than consumption and the consumption-output ratio forecasts 
changes in output. Fama (1992) advocates a model of this type, but does not 
provide a formal analysis. Hall (1988) and Campbell and Mankiw (1989) 
demonstrate the empirical relevance of the model with small (T by showing that 
predictable movements in real interest rates have been only weakly associated 
with predictable consumption growth in postwar U.S. data.’ 

The (T = 0 case also plays an interesting role in welfare analysis of the model. 
The maximized welfare of the representative agent can be written as a loglinear 
function of capital and technology by approximating Bellman’s equation. I write 
the maximized objective function defined in (3) as Vi -‘/(l - r), so that V, has 
the same units as consumption. The loglinear approximation of Bellman’s 
equation (derived in appendix A) is then 

(1 -. &)(cr - Q) = E,u,+, - v,. (33) 

This equation implies that u, can be written as an expected discounted value of 
future Log consumption, where the discount factor is l/A1 = 0.99 at benchmark 

‘Christiano, Eichenbdum. and Marshall (1991) and Hansen (1987) present an alternative general 
equilibrium permanent income model in which there is a linear storage technology which fixes the 
real interest rate. Here the real interest rate varies but consumers ignore this when CT = 0 because 
they are infinitely averse to intertemporal substitution. 

‘Campbell and Mankiw also argue that there is a predictable component of consumption growth 
correlated with predictable income growth, a phenomenon not modelled here. 
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parameter values. The solution for u, takes the form v, = v],,k, + ~“~a,. For any 
parameter values q”k = (1 - j-,)/(1 - A1 - &) = 0.11, the value of ?I& in the 
0 = 0 case. The elasticity with respect to technology, q,,, varies with the 
persistence parameter 4 but not with the intertemporal elasticity of substitution 
cr. For any 0, qva is always equal to the value of qca in the (T = 0 case. 

The interpretation of these results is straightforward. A 1% increase in capital 
increases the welfare of the representative agent by the same amount as an 
y],k = 0.11% permanent increase in consumption. vvk does not depend on the 
parameters of the agent’s utility function, and it can be measured by looking at 
the permanent consumption increase that the agent optimally chooses in the 
c = 0 case. Similarly, a 1% increase in technology has the same welfare effect as 
an qoo! permanent increase in consumption. qva can be found by looking at the 
permanent consumption increase chosen in the 0 = 0 case. A 1% temporary 
increase in technology has a welfare effect equivalent to a 0.01% permanent 
increase in consumption, while a 1% permanent increase in technology has 
a much larger welfare effect equivalent to a 0.89% permanent increase in 
consumption. 

2.7. Longer-run dynamics, and more general technology processes 

Figs. 1,2, and 3 illustrate the consequences of alternative parameter values for 
the dynamic response of output to technology shocks. In each case the initial 
response of output to a unit technology shock is just a = 0.667, the exponent on 
technology in the production function. Fig. 1 shows responses to a technology 
shock with persistence 4 = 0.5. The different response lines correspond to the 
five values of c studied in table 1. None of the responses are very different from 
the underlying AR(l) technology shock itself, because a transitory technology 
shock does not generate sufficient capital accumulation to have an important 
effect on output. To the extent that there is variation across g values, higher 
values give higher output initially but lower output in the long run. The reason 
is that an agent with a high value of cr accumulates capital aggressively in 
response to the initial technology shock and then decumulates it rapidly when 
the technology shock disappears. An agent with a low value of g, on the other 
hand, accumulates less capital but holds onto capital longer. In the extreme case 
D = 0, capital and output are permanently higher in the wake of a temporary 
technology shock. 

Figs. 2 and 3 show output responses to technology shocks with persistence 
4 = 0.95 and 4 = 1, respectively. Fig. 2 is similar to fig. 1, except that the 
different lines are further apart and output has a hump-shaped impulse response 
when rr is sufficiently high. Capital accumulation can now make the medium-run 
output response higher than the short-run response. In fig. 3 the long-run output 
response is one for any positive value of D, because of the cointegration property 
of the 4 = 1 model discussed above. The speed of adjustment to the long run is 
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Fig. 1. Output response to a technology shock with fixed labor supply and 4 = 0.5. 

The solid line gives the percentage response of output to a 1% technology shock in a model with 
fixed labor supply, specified in eqs. (1 l), (13) (17) and (18), when the intertemporal elasticity of 
substitution 0 = 0. The long-dashed line gives the response when u = 0.2. The short-dashed line 
gives the response when e = I. The dashed and dotted line gives the response when ~7 = 5. The 

dotted line gives the response when ,zr = x In all cases initial response is r = 0.667. 

governed by C, which determines qCk and hence the convergence parameter qkk. 
As already discussed, convergence is more rapid when 0 is larger; in the extreme 
case of infinite 0, the adjustment takes place in one period. 

An important feature of the loglinear model is that the solutions for simple 
AR(l) technology shocks can be combined to obtain solutions for more com- 
plicated technology processes. Suppose that log technology a, is the sum of two 
components a,, and u2t, each of which follows an AR(l) and is observed by the 
representative agent. It is straightforward to show that any endogenous variable 
z, obeys zt = qzkk, + qzlal, + qz2azt, where qZl is the solution already obtained 
for qZa when log technology equals a,,, and qZ2 is the solution for qza when 
log technology equals a,,. This result generalizes in the obvious way to any 
number of separately observed components, which may have arbitrary correla- 
tions. 

As an empirically relevant example, suppose that a,, and uzr have persistence 
parameters 0.95 and 1, respectively, and that their innovations have the same 
variance and are perfectly negatively correlated. Then a unit technology shock 
consists of a positive shock that decays at rate 0.95, combined with a negative 
permanent shock. Such a shock causes technology (measured relative to its 
previous steady-state growth path) to decline gradually to a new, permanently 
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Fig. 2. Output response to a technology shock with fixed labor supply and C$ = 0.95. 

The solid line gives the percentage response of output to a 1% technology shock in a model with 
fixed labor supply, specified in eqs. (1 l), (13) (17) and (18) when the intertemporal elasticity of 
substitution cr = 0. The long-dashed line gives the response when e = 0.2. The short-dashed line 
gives the response when e = 1. The dashed and dotted line gives the response when 0 = 5. The 

dotted line gives the response when e = co. In all cases the initial response is 8 = 0.667. 

lower level. It therefore approximates a ‘productivity slowdown’ of the type 
experienced in the U.S. in the 1970’s. 

Fig. 4 illustrates the effects of such a shock on output, consumption, and 
capital over a ten-year period. The figure assumes that G = 1. Technology is 
represented by a dotted line declining geometrically towards its new permanent 
level 1% below the old permanent level. The half-life of the technology decline is 
just over three years and almost 90% of the decline is completed after ten years. 
The long-dashed line represents consumption. Because the technology decline is 
anticipated, permanent income considerations immediately reduce consump- 
tion by about 0.8%. This initially leads to capital accumulation, as shown by the 
short-dashed line for the capital stock. In less than two years, however, the 
capital stock starts to decline towards its new steady-state level. Because capital 
is high relative to technology during the transition to the new steady state, 
output (shown by a solid line) is also high relative to technology. 

It is sometimes argued on permanent income grounds that a productivity 
slowdown should unambiguously increase saving. It is true that throughout the 
transition shown in the figure for the 0 = 1 case, consumption is unusually low 
relative to output. However this corresponds to faster capital accumulation only 
for the first two years. After that, capital is decumulated despite the low 
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Fig. 3. Output response to a technology shock with fixed labor supply and C$ = 1. 

The solid line gives the percentage response of output to a 1% technology shock in a model with 
fixed labor supply, specified in eqs. (II), (13) (17) and (18) when the intertemporal elasticity of 
substitution c = 0. The long-dashed line gives the response when 0 = 0.2. The short-dashed line 
gives the response when 0 = 1. The dashed and dotted line gives the response when 0 = 5. The 

dotted line gives the response when CJ = cc In all cases the initial response is GI = 0.667. 

consumption-output ratio because output is low relative to capital. This de- 
cumulation must occur (for any strictly positive rr), so that the economy can 
reach its new steady-state growth path with the same ratio of capital to 
technology that it had on the old growth path. Furthermore, if the elasticity of 
intertemporal substitution is large enough, consumption can actually rise rela- 
tive to output at the onset of a productivity slowdown. This occurs for any value 
of cr such that qca declines with persistence 4. Table 1 shows that an elasticity of 
intertemporal substitution of 5 is already large enough to produce this behavior. 

2.8. Summary 

Before moving on to the variable-labor model, three characteristics of the 
fixed-labor model deserve particular note. First, the impulse responses plotted in 
figs. 1, 2, and 3 show that capital accumulation has an important effect on the 
dynamics of the economy only when the underlying technology shock is persist- 
ent, lasting long enough for significant changes in capital to occur. The stochas- 
tic growth model is unable to generate persistent effects from transitory shocks.’ 

‘Blanchard and Fischer (1989) emphasize this point 
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Fig. 4. Response of the economy to a productivity slowdown with fixed labor supply 

This figure shows the percentage responses of several variables to a 1% permanent negative decline 
in technology, accompanied by a 1% transitory increase in technology with persistence C$ = 0.95. 
The dotted line gives the implied path of technology. The responses of other variables are calculated 
in a model with fixed labor supply and intertemporal elasticity of substitution e equal to I. The 
model is specified in eqs. (11) (13), (17) and (18) in the text. The long-dashed line gives the response of 
consumption, the short-dashed line gives the response of the capital stock, and the solid line gives the 

response of output. 

Second, technology shocks do not have strong effects on realized or expected 
returns on capital. The reason is that the gross rate of return on capital largely 
consists of undepreciated capital rather than the net output that is affected by 
technology shocks. The realized return on capital equals A3 times the log 
technology-capital ratio, and A3 = 0.03 at benchmark parameter values. Thus 
a 1% technology shock changes the realized return on capital by only three 
basis points, or twelve basis points at an annual rate. The expected return on 
capital is even more stable (and literally constant when the representative agent 
is risk-neutral) because capital accumulation lowers the marginal product of 
capital one period after a positive technology shock occurs, partially offsetting 
any persistent effects of the shock. 

Third, capital accumulation does not generate a short- or long-run ‘multi- 
plier’ in the sense of an output response to a technology shock that is larger 
(in percentage terms) than the underlying shock itself. None of the output 
responses shown in figs. 1,2, or 3 exceed 1. This means that slower-than-normal 
technology growth can generate only slower-than-normal output growth and 
not actual declines in output. The model with fixed labor supply can explain 
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output declines only by appealing to implausible declines in the level of 
technology. 

3. Variable labor supply 

I now consider two models with variable labor supply. These models leave the 
production function (1) unchanged, but allow labor input N, to be variable 
rather than constant and normalized to one. The capital accumulation eq. (2) is 
also unchanged. However the objective function (3) now has a period utility 
function involving both consumption and leisure. The first model assumes that 
period utility is additively separable in consumption and leisure, while the 
second model has nonseparable period utility. 

3.1. An additive1.v separable model 

In the first model, the representative agent has log utility for consumption and 
power utility for leisure: 

U(C,, 1 - N,) = log(G) + e(’ ; y;? 
‘n 

King, Plosser, and Rebel0 (1988a) show that log utility for consumption is 
required to obtain constant steady-state labor supply (balanced growth) in 
a model with utility additively separable over consumption and leisure. The 
form of the utility function for leisure is not restricted by the balanced growth 
requirement. I use power utility for convenience and because it nests two 
popular special cases in the real business cycle literature: log utility for leisure in 
a model with divisible labor and linear derived utility for leisure in a model with 
indivisible labor in which workers choose lotteries over hours worked rather 
than choosing hours worked directly [Hansen (1985) Rogerson (1988)]. The 
former case has yn = 1 and the latter has yn = 0. Christian0 and Eichenbaum 
(1992) and King, Plosser, and Rebel0 (1988a) explicitly compare these two 
special cases. By analogy with the notation of the previous section, I define 
nn = l/y,,, the elasticity of intertemporal substitution for leisure. 

The first-order condition for intertemporal consumption choice remains the 
same as before, except that the gross marginal product of capital now depends 
on labor input as well as technology and the capital stock. Eq. (5) is unchanged, 
but (4) becomes 

(35) 
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The new feature of the variable-labor model is that there is now a static 

first-order condition for optimal choice of leisure relative to consumption at 
a particular date: 

(36) 

The marginal utility of leisure is set equal to the wage W, times the marginal 
utility of consumption. With log utility for consumption, this is just the wage 
divided by consumption. The wage in turn equals the marginal product of labor 
from the production function (1). 

Analysis of the steady state from the previous section carries over directly to 
the variable-labor model. The relation (7) between y and r, and the steady-state 
values of the ratios A,/K,, Y,/K,, and C,/Y, are all the same as before. 

3.2. Fluctuations with separable utility 

Much of the analysis of fluctuations also carries over directly from the 
fixed-labor-supply model. The loglinear version of the capital accumulation eq. 
(13) becomes 

k ffl zz l.,k, + &(a, + n,) + (1 - 21 - I.&, (37) 

where A1 and & are the same as before. (37) differs from (13) only in that 
A2 multiplies n, as well as a,. The interest rate is now rr+l = I+(Lz~+~ + 

nz+l - k, + 1), and the loglinear version of the intertemporal first-order condition 
(17) becomes 

Eq. (38) differs from (17) only in that r~ is now equal to 1 and n,, 1 appears in the 
equation. The technology shock process (18) also remains the same as before: 

a, = qhz-1 + E,. (39) 

These expressions contain an extra variable n,, so to close the model one needs 
an extra equation which is provided by the static first-order condition (36). 
Loglinearizing in standard fashion (details are given in appendix A), I find that 

n, = ~,[@a, + (1 - a)(k, - Q) - ~1, (40) 
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where N is the mean of labor supply. If, as Prescott (1986) asserts, households 
allocate one-third of their time to market activities, then N is 3 and 
(1 - N)/N = 2. I shall take this as a benchmark value. 

It will be convenient to rewrite (40) to express labor supply in terms of capital, 
technology, and consumption: 

n, = v[(l-LX)k, + eta, - Cf], (41) 

where 

v = v(a,) = 
(1 - Nb, 

N + (1 - a)(1 - N)a; 
(42) 

The coefficient v is a function of c,,. It measures the responsiveness of labor 
supply to shocks that change the real wage or consumption, taking into account 
the fact that as labor supply increases the real wage is driven down. Thus, even 
when utility for leisure is linear (a, = a), the coefficient v is not infinitely large. 
Instead, v = l/(1 - CC) = 3 in this case. As the curvature of the utility function for 
leisure increases, v falls and becomes 0 when yn is infinite. This corresponds to 
the fixed-labor case studied in the previous section. Note that the value assumed 
for N affects only the relationship between (T, and v, and not any other aspect of 
the model. 

Eq. (41) can be used to substitute n, out of eqs. (37) (38) and (39). The system is 
then in the same form as before, and can be solved using the same approach. 
Once again log consumption is linear in log capital and log technology, with 
coefficients qck and qC.. The coefficient qck solves the quadratic eq. (24) where the 
coefficients Q2, Qi, and Q. are more complicated than before and are given in 
appendix B. The solution for v],, can be obtained straightforwardly from qCk and 
the other parameters of the model. These solutions are the same as in the 
previous section when labor supply is completely inelastic so that v = 0. 

3.3. Dynamic behavior of the economy 

The dynamics of the economy take the same form as in the fixed-labor model. 
Once again the log capital stock is a linear function of the first lags of log capital 
and log technology k,+ 1 = qkkk, + qkaut. But now the coefficients qkk and vka are 
given by 

?/kk = A, + %2(1 - a)v + &k[l - & - &(I + v)], 

(43) 

?,,‘a = &(I + NV) + y,,[l - A1 - &(I + v)]. 
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Log labor supply can also be written as a linear function of log capital and 
technology. Substituting the expression for consumption into (41) log labor 
supply is 

Increases in capital raise the real wage by a factor (1 - CC); this stimulates labor 
supply, but capital also increases consumption by a factor qck, and this can have 
an offsetting effect. Similarly, increases in technology raise the real wage by 
a factor CY, but the stimulating effect on labor supply is offset by the effect yl,, of 
technology on consumption. I use the notation qnk and v],, for the overall effects 
of capital and technology on labor supply. 

Finally, log output can also be written as a linear function of log capital and 
technology: 

Y, = C(1 - 4 + 41 - a - vc,Jlk + Ca + av(a - l~c,)lat 

(45) 

As before, this is an ARMA(2, 1) process, However, capital and technology now 
affect output both directly (with coefficients 1 - c1 and CI, respectively) and 
indirectly through labor supply. The initial response to a technology shock is 
now a + ctv(a - yCcl) rather than CC. Thus, the variable-labor model can produce 
an amplified output response to technology shocks, even in the very short run. 

Tables 2 and 3 illustrate the solution of the model for the same values of on 
and 4 that were used for CJ and Q, in table 1. Table 2 shows the consumption and 
capital elasticities that were reported in table 1; table 3 gives employment and 
output elasticities. 

When gn = 0 (the first column of tables 2 and 3), the model is the same as the 
model with fixed labor supply and log utility over consumption (the third 
column of table 1). In this case the coefficients qnk and qnll are both 0. As on 
increases, the coefficient qnk becomes increasingly negative, while v,~ becomes 
increasingly positive. Thus, an increase in capital lowers work effort because it 
increases consumption more than it increases the real wage. A positive tech- 
nology shock increases work effort. The coefficient q,,, is independent of the 
persistence of technology 4, but the coefficient qna declines with 4. The reason is 
that a persistent technology shock increases consumption more than a transi- 
tory one does (this is shown by the fact that qca increases with 4 in the table). The 
increase in consumption lowers the marginal utility of income and reduces work 
effort. Put another way, transitory technology shocks produce a stronger inter- 
temporal substitution effect in labor supply. 
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Table 2 

Consumption and capital elasticities for the separable variable-labor model with technology 
shocks.” 

0, 

4 0 0.2 1 5 co 

0.00 0.59, 0.05 0.57, 0.05 0.54, 0.07 0.51, 0.10 0.50, 0.11 
0.96, 0.08 0.95, 0.09 0.94, 0.13 0.93, 0.18 0.93, 0.20 

0.50 0.59, 0.06 0.57, 0.08 0.54, 0.10 0.51, 0.12 0.50, 0.14 
0.96, 0.07 0.95, 0.09 0.94, 0.13 0.93, 0.17 0.93, 0.19 

0.95 0.59, 0.23 0.57, 0.25 0.54, 0.29 0.51, 0.33 0.50, 0.35 
0.96, 0.06 0.95, 0.07 0.94, 0.09 0.93, 0.11 0.93, 0.12 

1.00 0.59, 0.41 0.57, 0.43 0.54, 0.46 0.51, 0.49 0.50, 0.50 
0.96, 0.04 0.95, 0.05 0.94, 0.06 0.93, 0.07 0.93, 0.07 

*Us is the elasticity of labor supply and 4 is the persistence of the AR(l) technology shock. The 
model is specified in eqs. (34)-(42) in the text. The top two numbers in each group are qcr, q<“, where 
qc:x is the elasticity of consumption with respect to the capital stock and qt. is the elasticity of 
consumption with respect to technology. The bottom two numbers in each group are qkk, q,.., where 
Q is the elasticity of next period’s capital stock with respect to this period’s capital stock and qt. is 
the elasticity of next period’s capital stock with respect to this period’s technology. 

Once again several special cases of the model are worth attention. The 
random walk model for log technology (4 = 1) is cointegrated just as in the 
fixed-labor model. Again we have qck + qC. = 1 and Y]kk + ?IkO = 1, but also 

r?nk + ~no = 0. In this model labor supply effects are quite weak: Even with linear 
utility for leisure (an infinite on), a 1% increase in technology stimulates only 
a 0.49% increase in work effort. As mentioned above, the case on = 0 is the 
fixed-labor model with log utility for consumption. The opposite extreme case 
on = cc solves relatively easily because (1 - a)v = 1, so the intercept term Q. in 
the equation for qck is 0 and this equation becomes linear. However, the 
coefficients obtained in this case do not have any straightforward interpretation. 

Tables 2 and 3 can also be used to calculate the elasticities of gross factor 
returns with respect to capital and technology. The return on capital 
r - n,(a,+l + n,+1 - 1+1 - k,, l)r so its response to capital is ,?j(q,,k - 1) and its 

response to technology is A3(1 + qna). These responses are small, just as they 
were in the fixed-labor model. The largest possible effect of a 1% technology 
shock on the realized return on capital is eight basis points at a quarterly rate, or 
32 basis points at an annual rate, when the technology shock is purely tempor- 
ary and the utility function is linear in leisure. The expected return on capital is 
also stable for similar reasons. 

The log real wage rate equals y, - n,, so its response to capital is ryk - qnk and 
its response to technology is qya - v,,~. Inspection of table 3 shows that the 
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Table 3 

Employment and output elasticities for the separable variable-labor model with technology shocks.” 

4 0 0.2 1 5 cx, 

0.00 0.00, 0.00 ~ 0.08, 0.22 - 0.24, 0.71 - 0.40, 1.32 - 0.49, 1.67 
0.33, 0.67 0.28, 0.81 0.17, 1.14 0.06, 1.54 0.01, 1.78 

- ~ - 0.50 0.00, 0.00 0.08, 0.21 0.24, 0.68 0.40, 1.25 - 0.49, 1.58 

0.33, 0.67 0.28, 0.81 0.17, 1.12 0.06, 1.50 0.01, 1.72 

0.00, 0.00 ~ 0.95 0.08, 0.15 - 0.24, 0.45 - 0.40, 0.78 ~ 0.49, 0.95 

0.33, 0.67 0.28, 0.77 0.17, 0.97 0.06, 1.18 0.01, 1.30 

0.00, 0.00 - 0.08, 0.08 - 0.24, 0.24 ~ 0.40, 0.40 - 1 .oo 0.49, 0.49 

0.33, 0.67 0.28, 0.72 0.17, 0.83 0.06, 0.94 0.01, 0.99 

dun is the elasticity of labor supply and C$ is the persistence of the AR(l) technology shock. The 
model is specified in eqs. (34)-(42) in the text. The top two numbers in each group are qnk, q_., where 
qnk is the elasticity of employment with respect to the capital stock and q.. is the elasticity of 
employment with respect to technology. The bottom two numbers in each group are qy,., qYu, where 
qyk is the elasticity of output with respect to the capital stock and qYo is the elasticity of output with 
respect to technology. 

elasticity of the wage with respect to technology is smallest when utility is linear 
in leisure. In this case (the right-hand column of table 3) the real wage elasticity 
is the same as the consumption elasticity qcO, because linear utility in leisure fixes 
the wage-consumption ratio. Depending on its persistence, a 1% technology 
shock can raise the real wage by 0.11% to 0.50%. Somewhat greater real wage 
effects are obtained when labor supply is inelastic. In the extreme fixed-labor 
case (the left-hand column of table 3), a 1% transitory or persistent technology 
shock raises the real wage by 0.67%. As Christian0 and Eichenbaum (1992) 
emphasize, in this model the marginal product of labor is proportional to the 
average product, so elasticities for labor productivity are the same as those for 
the real wage. 

Variable labor supply has important implications for the short-run elas- 
ticity of output with respect to technology, qya. Recall that when labor 
supply is fixed (v = 0), this elasticity is just CI = 0.667. With variable 
labor supply, qya = a + ctv(a - qCO). .This can exceed 1, reaching a maximum 
of 1.78 when v = 3 and 4 = 0. The elasticity falls with 4, however, and 
when 4 = 1, it cannot exceed 0.99. This is important because an elas- 
ticity greater than 1 allows absolute declines in output to be generated by 
positive but slower-than-normal growth in technology; this is surely more 
plausible than the notion that there are absolute declines in technology. The 
elasticity is illustrated in fig. 5, a contour plot of qya against the parameters 
v and 4. 
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Fig. 5. Initial output response to a technology shock with variable labor supply and separable 
utility. 

The contours show the elasticity of output with respect to technology in a model with variable labor 
supply and additively separable utility over consumption and leisure. The model is specified in 
eqs. (34)-(42) in the text. The elasticity is plotted for different values of the parameters Y and 4, where 
Y is a function of the elasticity of labor supply defined in eq. (42) and C#J is the persistence of 
technology shocks. The contour lines are 0.1 apart. Note that the smallest value of C#J shown is 0.5, 

and that when v = 0, the elasticity is a = 0.667 for any value of 4. 

3.4. A nonseparable model 

An alternative specification that is consistent with balanced growth is the 
nonadditively separable Cobb-Douglas utility function, 

U(C,, ly) = [Cf(l - N,)‘-p]‘-y/(l - y). 

This is used by Eichenbaum, Hansen, and Singleton (1988) and Prescott (1986). 
When y = o = 1, this utility function is the same as the additively separable 
utility function with gn = 1. 

The steady state for this model is similar to that for the previous model. The 
steady-state output-capital and output-consumption ratios are the same as 
before, but the equation relating the growth rate, the utility discount rate, and 
the interest rate is slightly altered from (7) to 

log(B) + r 
cl = 1 - p(1 - y)’ 

(47) 
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The parameter p determines the fraction of time devoted to market activities, N. 
Given N one can calculate the implied p as p = l/(1 + [(l - N)a(Y/C)/N]), 
where Y/C is the steady-state output-consumption ratio. At the benchmark 
parameter values, with N = 0.33, p = 0.36. 

The approximate Ioglinear mode1 of fluctuations has the same capital accu- 
mulation equation as before. The static first-order condition for optimal labor 
supply does not depend on the curvature of the utility function and is 

ri( = v(l)[(l - 31)k, + ixa, - C,], (48) 

where v(l) is given by (42) setting (T, = 1. The intertemporal first-order condition 
is somewhat more complicated than in the separable case. It takes the form 

=&M&+, + 4+1 - k,,). (49) 

As y increases, the representative agent becomes more averse to intertemporal 
substitution. In the limit with an infinite y and (7 = 0, eq. (49) implies 
E,Ac $+r = [(l - p)N/p(l - N)JE,An,+, = 0.88An,+r at benchmark param- 
eter values. In this case the representative agent’s marginal utility follows 

Table 4 

Consumption and capital elasticities for the nonseparable variable-labor model with technology 
shocks.” 

.-_l”l ..~ .-.-- -_... -..-.i--. -.-_- 
CT 

.-“_l ..-. ~ ~_.__ - 
4 0 0.2 1 5 n3 
_____ -I.-. _ I_ ---_ 

0.00 0.23, 0.35 0.37, 0.28 0.54, 0.07 0.71, - 0.30 0.82, - 0.62 
1.00, 0.08 0.97, 0.09 0.94, 0.13 0.91, 0.20 0.89, 0.26 

0.50 0.23, 0.35 0.37, 0.29 0.54, 0.10 0.71, - 0.24 0.82, - 0.53 
1.00, 0.08 0.97, 0.09 0.94, 0.13 0.91, 0.19 0.89, 0.24 

0.95 0.23, 0.42 0.37, 0.42 0.54, 0.29 0.71, 0.09 0.82, - 0.06 
1.00, 0.07 0.97, 0.07 0.94, 0.09 0.91. 0.45 0.89, 0.16 

1.00 0.23, 0.77 0.37, 0.63 0.54, 0.46 0.71, 0.29 0.82, 0.18 
1.00, 0.00 0.97. 0.03 0.94, 0.06 0.91, 0.09 0.89, 0.11 

‘CT is the elasticity of intertemporal substitution and # is the persistence of the AR(l) technology 
shock. The model is specified in eqs. (46)-(49) in the text. The top two numbers in each group are, r+ 
q_, where qca is the elasticity of consumption with respect to the capital stock and qro is the elastnnty 
of consumption with respect to technology. The bottom two numbers in each group are q,.., qku, 
where ntn is the elasticity of next period’s capital stock with respect to this period’s capital stock and 
nka is the elasticity of next period’s capital stock with respect to this period’s technology. 



4 ..- 

0.00 

0.50 

0.95 

t.00 

l--lll..- ~_ ._____ 

(i 
---- .~__._ ..-___________ ._.__ _.I__. 

0 0.2 1 5 i;c 
” .._ ._ _.._ --_____ 

0.13, 0.38 - 0.05, 0.46 -.- 0.24, 0.7 1 - 0.45, 1.16 - 0.58, 1.54 
0.42, 0.92 0.30, 0.98 0.17, 1.14 0.03, 1.44 - 0.05, 1.69 

0.13, 0.38 - 0.05, 0.45 - 0.24, 0.68 - 0.45, 1.09 - 0.58, 1.44 
0.42, 0.92 0.30, 0.97 0.17, 1.12 0.03, 1.40 - 0.05, 1.63 

0.13, 0.30 - 0.05, 0.29 - 0.24, 0.45 - 0.45, 0.70 - 0.58, 0.88 
0.42, 0.87 0.28, 0.86 0.17, 0.97 0.03, 1.13 - 0.05, 1.25 

0.13, - 0.13 - 0.05, 0.05 - 0.24, 0.24 - 0.45, 0.45 - 0.58, 0.58 
0.42, 0.58 0.30, Q.70 0.17, 0.83 0.03, 0.97 - 0.05, 1.05 

_- _-..__._ “.“~ --._.-... 

ag. is the elasticity of intertemporal substitution and # is the persistence of the AR(1 f technology 
shock. The model is specified in eqs. (46))(49) in the text. The top two numbers in each group arc q.&, 
nno, where Q is the elasticity ofemployment with respect to the capital stock and nn,, is the elasticity 
of employment with respect to technology. The bottom two numbers in each group are nykr nFa. 
where nyK is the elasticity of output with respect to the capital stock and nYo is the elasticity of output 
with respect to technology. 

Table 5 

Employment and output elasticities for the nonseparable variable-labor model with technology 
shocks.” 

a random walk, but neither log consumption nor log labor supply need follow 
random walks because of the nonseparability in utility. 

Solution of the nonseparable model proceeds in standard fashion, described 
explicitly in appendix B. Consumption and capital elasticities for this model are 
given in table 4 and employment and output elasticities are given in table 5. 
Comparing table 4 with table 2, the nonseparable model allows a much wider 
range of consumption elasticities because it does not fix the curvature of the 
utility function. However, this does not have a major effect on output elasticities. 
Comparing table 5 with table 3, the output response to technology shocks 
covers roughly the same range in the nonseparable model as it did in the 
separable model. The largest possible response to a temporary technology shock 
is slightly smaller in the nonseparable model, but the largest possible response to 
a permanent shock is slightly larger. This means that the nonseparable model 
can produce a multiplier slightly greater than 1 even when technology shocks 
are permanent. 

Just as in the fixed-labor model, the solutions obtained above can be com- 
bined to describe responses to more general technology processes. Fig. 6 shows 
the response of the economy to a productivity slowdown (a positive shock with 



Period 

Fig. 6. Response of the economy to a productivity slowdown with variable labor supply and 
separable utility. 

This figure shows the percentage responses of several variables to a 1% permanent negative decline 
in technology, accompanied by a 1% transitory increase in technology with persistence C# = 0.95. 
The dotted line gives the implied path of technology. The responses of other variables are calculated 
in a model with variable labor supply and additively separable utitity over consumption and leisure. 
The model is specified in eqs. (34)-(42) in the text. The elasticity of labor supply on is assumed to 
equal 1. The long-dashed line gives the response of consumption, the short-dashed line gives the 

response of the capital stock, and the solid line gives the response of output. 

persistence 0.95, combined with a negative shock with persistence l), under the 
assumption of log utility for consumption and leisure. As noted above, this 
utility specification can be obtained from the separable model with cr, = 1 or 
from the nonseparable model with g = 1. 

The dynamics shown in fig. 6 are similar to those in fig. 4. Consumption drops 
immediately, which leads to a period of capital accumulation before capital 
gradually declines to its new steady-state value. There are however two new 
features in fig. 6. First, in the later stages of the transition the consump- 
tionoutput ratio is above its steady-state level because low real interest rates 
stimulate consumption. Second and more important, the initial drop in con- 
sumption is accompanied by an increase in work effort (since the technology 
shock has no immediate impact on the real wage, and the marginal utility of 
consumption is higher). This raises output initially, and leads to a more pro- 
nounced accumulation of capital than in fig. 4. Output falls below its old 
steady-state level one year after the initial shock, but capital does not fall below 
this level until four years after the shock. It is straightforward to verify from 



tables 3 and 5 that this effect is robust: The initial output response to the 
productivity slowdown is positive for any possible value of fl or (T,. 

This example illustrates an important point. In a model with variable labor 
supply, the responses of employment and output to a technology shock decline 
with the persistence of that shock. If the shock is more persistent than a random 
walk, so that its ultimate effect is larger than its initial effect, then it is possible to 
get a perverse initial response of empIoyment and output. The reason is that 
a highly persistent shock has a large initial effect on the marginal utility of 
consumption relative to its initial effect on the real wage. 

4. Government spending and taxation 

The stochastic growth model can also be subjected to other types of shocks. In 
this section I study the effects of government spending. For simplicity I assume 
throughout that government spending does not enter the production function or 
the utility function of the representative agent. The effects of government 
spending depend critically on the assumed tax system [Baxter and King (1993)]; 
here I first study lump-sum taxes and then consider a simple form of distortionary 
income taxation, 

4.1. Lu~p-~~~~ taxation 

When government spending is financed by lump-sum taxation, all first-order 
conditions are the same as before. Only the capital accumulation equation 
changes, becoming 

K f+l = (1 - 6)K, + Y, - c, - x,, (50) 

where X, is the level of government spending. Note that the time path of 
spending is what is relevant, not the time path of taxes, because Ricardian 
equivalence holds in this model. 

The steady state of the economy with government spending is very similar to 
the steady state described previously. In particular the relation between the 
growth rate and the interest rate is the same, and the output-capital ratio is the 
same. The ratio of private plus government consumption to output is also 
unchanged, which means that the private consumption~utput ratio is reduced 
by the government spending~output ratio. 

The addition of government spending does not have an important effect on 
the economy’s response to technology shocks. The only effect comes from the 
fact that the loglinear approximate capital accumulation equation is now 

k t+1 z 21 k, + &(a, + n,) + 12qxt + (1 - I, - 22 - A&t, (51) 
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where 

- (7 + 6)X/Y 

A4 = (1 - a)(1 + g) . 
(52) 

If the steady-state government spending-output ratio is 0.2, then A4 = 0.02 at 
the benchmark values of the other parameters. The effect of log consumption on 
log capital is therefore reduced by 0.02. The previous analysis of technology 
shocks applies if one replaces (1 - 2, - 2,) by (1 - A1 - i, - 2,)throughout. 

Similar reasoning shows that the technology shock process does not affect the 
economy’s response to government spending shocks. For simplicity, I shall 
therefore ignore technology shocks in the remainder of this section. Assuming 
an AR(l) process for government spending, the loglinear model with separable 
utility over consumption and leisure becomes (51) with a, set to 0, together with 

iI, = v[(l - CL)/& - c,], 

where v = ~(a,,) is as defined in eq. (42). 

Table 6 

Consumption and capital elasticities for the separable variable-labor model with government 
spending shocks and lump-sum taxationa 

0. 

4 0 0.2 1 5 co 

0.00 0.70, - 0.02 
0.96, - 0.02 

0.50 0.70, ~ 0.03 
0.96, - 0.02 

0.95 0.70, - 0.18 
0.96, - 0.01 

1 .oo 0.70, - 0.36 
0.96, 0.00 

0.66, - 0.02 
0.96, - 0.02 

0.66, - 0.03 
0.96, - 0.02 

0.66, - 0.16 
0.96, - 0.01 

0.66, - 0.30 
0.96, 0.00 

0.60, - 0.01 0.55, - 0.01 
0.95, - 0.02 0.93, - 0.02 

0.60, ~ 0.03 0.55, - 0.02 
0.95, - 0.02 0.93, - 0.02 

0.60, - 0.12 0.55, - 0.10 
0.95, - 0.00 0.93, 0.00 

0.60, - 0.21 0.55, - 0.16 
0.95, 0.0 1 0.93, 0.02 

0.53, - 0.01 
0.93, - 0.02 

0.53, ~ 0.02 
0.93, ~ 0.02 

0.53, - 0.09 
0.93, 0.00 

0.53, - 0.14 
0.93, 0.02 

acr, is the elasticity of labor supply and 4 is the persistence of the AR(l) government spending 
shock. The model is specified in eqs. (50)-(55) in the text. The top two numbers in each group are qct, 
q_, where qck is the elasticity of consumption with respect to the capital stock and q_ is the elasticity 
of consumption with respect to government spending. The bottom two numbers in each group are 
Q, qrX, where qkx is the elasticity of next period’s capital stock with respect to this period’s capital 
stock and qkx is the elasticity of next period’s capital stock with respect to this period’s government 
spending. 
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This model can be solved in the standard fashion. (Details are given in 
appendix B.) Once the elasticities of consumption qck and qcX have been found, 
the other elasticities follow straightforwardly from (51), (55), and the production 
function. Table 6 gives the consumption and capital elasticities, and table 7 gives 
the employment and output elasticities for the standard range of parameter 
values. 

Table 6 shows that private consumption falls when government spending 
increases. It falls by more when government spending is more persistent, for 
permanent income reasons. It falls by less when labor supply is more elastic, for 
then increased labor supply (shown in table 7) can meet some of the increased 
tax burden. Labor supply increases with government spending, since the real 
wage is unchanged by a government spending shock and the marginal utility of 
consumption increases. Labor supply increases by more when labor supply is 
more elastic and when a more persistent change in government spending leads 
to a greater decline in consumption and increase in the marginal utility of 
consumption. 

It follows from this that the output effect of government spending increases 
with the persistence of government spending. This is directly contrary to the 
claims of Barro (1981) and Hall (1980). Aiyagari, Christiano, and Eichenbaum 
(1992) and Baxter and King (1993) have already established the correct result in 

Table I 

Employment and output elasticities for the separable variable-labor model with government 
spending shocks and lump-sum taxation.” 

dJ 0 0.2 1 5 X 

0.00 0.00, 0.00 - 0.11, 0.01 - 0.31, 0.02 ~ 0.51, 0.03 - 0.60, 0.04 
0.33, 0.00 0.26, 0.00 0.12, 0.01 ~ 0.01, 0.02 - 0.07, 0.02 

0.50 0.00, 0.00 - 0.11, 0.01 - 0.3 1, 0.03 - 0.51, 0.05 - 0.60, 0.06 
0.33, 0.00 0.26, 0.01 0.12, 0.02 - 0.01, 0.04 - 0.07, 0.04 

0.00, 0.00 - 0.11, 0.05 - 0.31, 0.15 - 0.95 0.51, 0.23 - 0.60, 0.27 
0.33, 0.00 0.26, 0.04 0.12, 0.10 - 0.01, 0.16 - 0.07, 0.18 

0.00, 0.00 - 0.11, 0.11 - 0.31, 0.26 - 0.51, 0.38 - 1.00 0.60, 0.43 
0.33, 0.00 0.26, 0.07 0.12, 0.17 - 0.01, 0.25 - 0.07, 0.29 

%. is the elasticity of labor supply and C#J is the persistence of the AR(l) government spending 
shock. The model is specified in eqs. (50)-(55) in the text. The top two numbers in each group are v.~, 
qnX, where qmt is the elasticity of employment with respect to the capital stock and qaX is the elasticity 
of employment with respect to government spending. The bottom two numbers in each group are 
v,,~, qyX, where qvt is the elasticity of output with respect to the capital stock and qyX is the elasticity of 
output with respect to government spending. 
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Fig. 7. Initial output response to a government spending shock with variable labor supply, sepa- 
rable utility, and lump-sum taxation. 

The contours show the short-run elasticity of output with respect to government spending in 
a model with variable labor supply, additively separable utility over consumption and leisure, and 
lump-sum taxation. The model is specified in eqs. (50)-(55) in the text. The elasticity is plotted for 
different values of the parameters v and 4, where v is a function of the elasticity of labor supply 
defined in eq. (42) and C#I is the persistence of government consumption shocks. The contour lines are 
0.04 apart. Note that the smallest value of C#J shown is 0.8, and that when v = 0, the elasticity is 0 for 

any value of 4. 

a real business cycle framework, but the analytical approach here may make the 
result more transparent. Fig. 7 is a contour plot of the output elasticity against 
the persistence q5 of government spending and the parameter v measuring the 
elasticity of labor supply. As C$ and v approach their maximum possible values, 
the output elasticity approaches its maximum of 0.29. Dividing by the steady- 
state ratio of government spending to output (assumed to be 0.2), this implies 
that an extra dollar of government spending generates at most 1.45 dollars of 
output. The elasticity declines very rapidly with 4; even when C$ = 0.95 the 
largest possible elasticity is only 0.18, implying that an extra dollar of govern- 
ment spending generates less than an extra dollar of output. 

4.2. Distortionmy taxation 

Distortionary taxation can be modelled in a simple way by assuming that tax 
is levied at a flat rate T, on all gross output [Baxter and King (1993)]. Once 
taxation is distortionary, the timing of taxation can have real effects even in 
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a model with an infinitely-lived representative agent; for simplicity I assume here 
that the government budget is balanced each period, so that 

Tt = XJ Y,. (56) 

As in the discussion of lump-sum taxation, I assume that technology is 
nonstochastic and normalize it to unity. I write after-tax output as Y:, defined 

by 

r: = (1 - Z,)Yt = (1 - t,)N;Kj-“. (57) 

Then the capita1 accumulation equation can be written as 

K t+l = (1 - 6)K, + r: - c, - x,. (58) 

The first-order condition for optima1 consumption choice, eq. (5), continues to 
hold but the rate of return on capital must be measured after tax as 

R f+l = (1 - cl)(l - rt+r) 2 
( ) 

a + (1 - 6). 
ffl 

The first-order condition for optima1 labor supply, eq. (36) becomes 

(60) 

Comparison of eqs. (57) to (60) with eqs. (l), (2), (35), and (36) shows that 
a mode1 of after-tax output Y: with gross output taxation and a balanced 
government budget takes exactly the same form as a model of pre-tax output Y, 
with technology shocks. lo YF and (1 - tt) appear everywhere that Y, and 
A: appeared in the technology shock model. Hence the results of section 3 can 
be used to calculate the effects of distortionary tax shocks on after-tax output. 

In doing this calculation, several points require careful attention. First, 
section 3 reported the effects of a 1% positive shock to technology, which 
corresponds to an a% positive shock to (1 - 7,). Linearizing around a steady- 
state value of 0.8 for 1 - t,, this corresponds to a reduction in the gross output 
tax rate of 0.8~ = 0.53 percentage points. Second, the elasticities reported in 
table 3 for pre-tax output apply here to after-tax output. Noting that from 
eq. (57) y, = yt* - log(1 - z,), to get elasticities for pre-tax output one must 

“I am grateful to Robert King for pointing out this analogy. 
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Table 8 

Consumption and capital elasticities for the separable variable-labor model with government 
spending shocks and distortionary gross output taxation.” 

~ 0.00 0.62, 0.02 0.60, - 0.02 0.56, - 0.03 0.52, - 0.05 0.50, ~ 0.07 
0.96, ~ 0.03 0.96, - 0.04 0.95, - 0.06 0.94, - 0.10 0.93, - 0.13 

- 0.50 0.62, 0.03 0.60, - 0.03 0.56, - 0.05 0.52, - 0.07 0.50, - 0.09 
0.96, - 0.03 0.96. - 0.04 0.95, - 0.06 0.94, - 0.09 0.93, - 0.12 

~ - 0.95 0.62, 0.09 0.60, 0.10 0.56, - 0.13 0.52, - 0.16 0.50, - 0.17 
0.96, - 0.02 0.96, - 0.03 0.95, - 0.04 0.94, - 0.05 0.93, ~ 0.06 

0.62, - - - - 1.00 0.16 0.60, 0.17 0.56, 0.19 0.52, 0.20 0.50, - 0.22 
0.96, - 0.02 0.96, - 0.02 0.95, - 0.02 0.94, - 0.03 0.93, - 0.03 

au, is the elasticity of labor supply and 4 is the persistence of the AR(l) government spending 
shock. The model is specified in eqs. (56))(60) in the text. The top two numbers in each group are net, 
q_. where rlct is the elasticity of consumption with respect to the capital stock and n_ is the elasticity 
of consumption with respect to government spending. The bottom two numbers in each group are 
qxn, ntX, where rrkn is the elasticity of next period’s capital stock with respect to this period’s capital 
stock and qnx is the elasticity of next period’s capital stock with respect to this period’s government 
spending. 

subtract c( from the qya values reported in table 3. When one does this, one finds 
that tax cuts have small positive effects on pre-tax output whenever the elasticity 
of labor supply is positive. These effects increase with the elasticity of labor 

supply and are larger when tax cuts are temporary. Third, the analysis of 
technology shocks assumed that a, followed an AR( 1) process. This is equivalent 
here to assuming that log( 1 - 2,) follows an AR( 1) process. But if one loglinear- 
izes eq. (56), one finds x, z y, - 41og(l - rl). Since y, is an ARMA(2, l), an AR(l) 
for log(1 - TV) generally implies a more complicated ARMA(2,l) process for 
government spending x,.’ ’ 

In order to allow a more direct comparison between the effects of AR(l) 
government spending shocks with lump-sum taxation and the effects of the same 
spending shocks with distortionary taxation, one can assume that x, follows an 
AR(l) process and analyze the model (56) through (60) directly. Loglinearizing 
the model and applying the method of undetermined coefficients in the usual 
way (the details are given in appendix B), I obtain results reported in tables 
8 and 9. Comparing these results with those in tables 6 and 7, it is clear that the 

“Since x, equals tax revenue, the loglinearization of (56) also implies that tax cuts always lower 
tax revenue because for all parameter values considered qr. - 4a < 0. This result follows from the 
fact that the benchmark steady-state tax rate of 0.2 is on the upward-sloping portion of the Laffer 
Curve. Temporary tax cuts reduce revenue less than permanent tax cuts, however. 
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Table 9 

Employment and output elasticities for the separable variable-labor model with government 
spending shocks and distortionary gross output taxationa 

0.00 0.00, 0.00 - 0.07, - 0.09 - 0.21, - 0.32 - 0.38, - 0.73 - 0.48, ~ 1.08 
0.33, 0.00 0.29, - 0.06 0.19, - 0.22 0.08, - 0.49 0.01, - 0.71 

- - - - - - - ~ 0.50 0.00, 0.00 0.07, 0.08 0.21, 0.30 0.38, 0.68 0.48, 0.98 
0.33, 0.00 0.29, - 0.05 0.19, - 0.20 0.08, - 0.45 0.01, - 0.66 

0.00, 0.00 ~ 0.07, - 0.06 - 0.21, - 0.18 - 0.38, - 0.35 - 0.48, - 0.95 0.47 
0.33, 0.00 0.29, - 0.04 0.19, - 0.12 0.08, - 0.24 0.01, - 0.31 

0.00, 0.00 ~ 1.00 0.07, - 0.03 - 0.21, - 0.09 - 0.38, - 0.16 - 0.48, ~ 0.21 
0.33, 0.00 0.29, - 0.02 0.19, - 0.06 0.08, - 0.11 0.01, - 0.14 

a~n is the elasticity of labor supply and CJ is the persistence of the AR(l) government spending 
shock. The model is specified in eqs. (56)-(60) in the text. The top two numbers in each group are qnx, 
q.,, where qnt is the elasticity of employment with respect to the capital stock and 1.; is the elasticity 
of employment with respect to government spending. The bottom two numbers in each group are 
qYk, v,,~. where qsx is the elasticity of output with respect to the capital stock and nrX is the elasticity of 
output with respect to government spending. 

negative incentive effects of higher taxes outweigh the positive effects of higher 
government spending on pre-tax output. Output always falls when government 
spending increases; it falls by more when the elasticity of labor supply is high, 
and when the spending increase is temporary. A temporary spending increase 
leads to intertemporal substitution of work effort away from the period in which 
output taxation is high. Consumption also falls when government spending 
increases, but for permanent income reasons it falls by more when the spending 
increase is permanent. 

5. Conclusion 

In this paper I have argued that an analytical approach to the stochastic 
growth model helps to generate important insights. I have assumed plausible 
benchmark values for model parameters describing the steady-state growth path 
of the economy, and have used an approximate analytical solution to explore 
the effects of other parameters ~ the intertemporal elasticity of substitution in 
consumption, the elasticity of labor supply, the persistence of technology shocks, 
and the persistence of government spending shocks ~ on the dynamic behavior 
of the model. Some of the main results of this exploration are as follows. 

First, a model with fixed labor supply and a very small intertemporal elastic- 
ity of substitution in consumption is a general equilibrium version of the 
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permanent income theory of consumption. It has many of the properties 
discussed informally by Fama (1992); in particular, temporary technology 
shocks cause temporary fluctuations in output and investment, but not in 
consumption. This model is also consistent with the empirical evidence of Barro 
and Sala-i-Martin (1992) that output converges only very slowly to its steady- 
state growth path. 

Second, with variable labor supply it is possible for the elasticity of output 
with respect to technology shocks to exceed 1. This seems to be important if 
output fluctuations are to be explained by technology shocks, because it permits 
output to decline when technology grows more slowly than normal; with 
a smaller-than-unit elasticity, on the other hand, technology declines are needed 
to produce output declines. Unfortunately, an elasticity greater than 1 depends 
both on highly elastic labor supply (as is well understood) and on low persist- 
ence of technology shocks. If technology is a random walk and utility is 
separable over consumption and leisure, then even with infinitely elastic labor 
supply the output elasticity cannot exceed 1. 

Third, the basic analysis in this paper assumes an AR( 1) log technology shock. 
However, different solutions can be combined to obtain the solution for any 
linear combination of AR( 1) processes. This enables me to calculate the response 
of the economy to a highly persistent technology shock of the type that may 
have occurred in the ‘productivity slowdown’ of the 1970’s. The output elasticity 
with respect to such a shock can actually be negative, because low technology 
growth today signals even lower technology (relative to trend) in the future, and 
this stimulates output today rather than dampening it. 

Fourth, all the models examined have the feature that expected and realized 
returns on capital are extremely stable. A 1% technology shock moves the 
realized return on a one-period investment in capital by no more than 12 basis 
points (at an annual rate) in a fixed-labor model and by no more than 32 basis 
points in a separable variable-labor model; and for most parameter values the 
return on capital is much less responsive to technology shocks. The reason for 
this stability is that most of the return on a one-period capital investment is 
undepreciated capital rather than the output which is affected by technology. 
This feature of the stochastic growth model makes it hard for the model to 
explain the observed variability of real interest rates. 

Fifth, the paper follows recent work showing that permanent shocks to 
unproductive government spending, financed by lump-sum taxation, have larger 
output effects than temporary shocks. With sufficiently elastic labor supply and 
sufficiently persistent government spending, it is possible for a dollar of govern- 
ment spending to stimulate more than a dollar of additional output; however 
this requires an AR(l) process for government spending with a persistence 
parameter above 0.96. 

Finally, it is shown that positive shocks to unproductive government spend- 
ing, financed by contemporaneous distortionary taxation, are closely analogous 
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to negative technology shocks. An increase in spending financed by a flat-rate 
gross output tax reduces output; this effect is stronger when the spending 
increase is temporary. 

The analytical approach of this paper can be used to study a number of other 
interesting issues. It should be straightforward, for example, to allow for convex 
adjustment costs in investment [Baxter and Crucini (1993)]; this might help the 
model to generate more variable returns to capital. The introduction of a non- 
market or home production technology [Benhabib, Rogerson, and Wright 
(1991) Greenwood and Hercowitz (1991)] might relax the restrictions on utility 
implied by balanced growth when labor supply is variable. There is much work 
to be done on more general models of distortionary taxation, including of course 
models in which government debt breaks the link between the time path of 
spending and the time path of tax rates [Greenwood and Huffman (1991), 
McGrattan (1993), Ohanian (1993)]. Alternative models of consumer behavior 
can be explored, including models of habit formation [Abel (1990), Constantin- 
ides (1989)] and ‘rule-of-thumb’ behavior [Campbell and Mankiw (1989)]. 
There are also interesting alternative models of production, in particular those 
with external effects of investment on technology [Baxter and King (1990)]. 
More challenging will be to allow for real and nominal macroeconomic rigidities 
of the type emphasized by recent work in the Keynesian tradition. Ultimately, 
a stochastic growth model incorporating such rigidities holds out the promise of 
a new synthesis in macroeconomics. 

Appendix A: Taylor approximations 

To obtain eq. (13) I proceed as follows. On the left-hand side of (12) is the 
nonlinear function fr (A k, + 1 ) E log [exp(Ak, + , ) - (1 - S)]. This is approxi- 

mated asfi(Ak,+I) =Jr(g) +f;(g) (Ak,+1 -g), where 

f;(s) = 
exp(g) l+g 

exp(g) - (1 - 6) Z 6’ 

On the right-hand side of (12) is the nonlinear function f2(ct+ 1 - y,+ 1) - 
log[l - exp(c, - y,)].12 This is approximated as,f,(c,+, - y,+r) %J2(c - y) + 

f’z(c - YHG+ 1 - y,+ 1 - (c - y)), where 

r+6 
.f;(c - Y) = 1 - (1 _ u)(g + @’ 

“Connoisseurs will recognize this as the function approximated in Campbell and Shiller (1988) 
and Campbell (1993). 
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Substituting these approximations into (12) and dropping constants, I obtain 
a loglinear approximate accumulation equation, 

r+6 l-(1 _cc)(g+6) 1 (c, - Y,). (A.3) 

The log production function (11) can be used to substitute out y, from this 
equation, yielding (13). 

To obtain eq. (16) I take logs of (4) to obtain 

rf+l =f3(a,+l - kt+l) 

= log[l - 6 + (1 - z)exp(aa,+, - crk,,,)]. (A.4) 

The function f3(a, + 1 - k,,,) is approximated asf&+i - k,+,) ~_&(a -k) + 

fj(a - k)(a,+l -k,+, -(a - k)), where 

f;(a - k) z e. (A.9 

Substituting these expressions into (15) yields (16). 
To obtain eq. (33) I proceed as follows. Bellman’s equation states that 

IJ’-~ = maxC’-Y + BE, I’:;;. t f 64.6) 

It is straightforward to show that in steady state 

vl-Y 
f r-g 

Cl-Y 
* 1 +r’ 

(A.7) 

Taking logs of (A.6) and dropping constants, I obtain f2((1 - y)(c, - u,)) = 
log(1 - exp[(l - y)(c, - u,)]) = (1 - ~)E,(u,+i - a,). On the left-hand side is 
the same function approximated above in (A.2), where now 

&((I - y)(c - ?I)) z - z = 1 - ;1i 

To obtain eq. (40), I take logs of (36) dropping constants, and obtain 

64.8) 

- Ynlog[l - exp(n,)] = eta, + (1 - ct)(kl - n,) - c,. (A.9) 
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On the left-hand side of (A.9) is the nonlinear functionf,(n,) = 
This is approximated asf4(n,) z:Jn) +fk(n)(n, - n), where 

fkb) = - 
exp(4 ~ N _- 

1 - exp(n) 1-N’ 

1wCl - exph)l. 

(A.lO) 

Substituting into (A.9) and rearranging, I obtain (40) and (41). 

Appendix B: Complete solutions for the variable-labor models 

In the separable variable-labor model with technology shocks, the solution 
for v],, is the solution to the quadratic eq. (24) Q2q:k + Q1qck + Q. = 0, where 
now 

Q2 = [l + I”,V][l - & - &(l + v)], 

Q, = [l + I.,v][& + &(l - cc)v] 

- I,,[(1 - cX)v - l][l - & - &(l + v)] - 1, 

Q. = - &[(l - CI)V - I][& + L2(1 - cr)v]. (B.1) 

The solution is given by the quadratic formula (26), as before. Given q&, the 
solution for qca follows as 

In the nonseparable variable-labor model with technology shocks, the solu- 
tion for consumption elasticities is more complicated. It is easiest to state by 
defining some intermediate parameters: 

ti = (1 - ~)(l - y)(Nl(f - N))v(l)> 

51 = 1 - p(l - 7) - lj + j*3v(l), 

52 = - (1 - P(1 - Y) - $)3 

53 E lj(1 - fX) - %,[v(l)(l - a) - 11, 
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til = ,I1 + A,(1 - CC)\(l), 

Ii* = 1 - A, - A,(1 + v(l)),. 

Kj = nz(l + W(1)). (B.3) 

Then again qck solves Q2r& + QI?lck + Q. = 0, where now 

The solution is given by the quadratic formula (26) as before. Given rck, the 
solution for qca follows as 

(B.5) 

In the separable variable-labor model with government spending shocks and 
lump-sum taxation, the quadratic equation for qck has the same parameters as 
before, except that 1 - A1 - A,(1 + r) is replaced by 1 - A1 - A*(1 + v) - 1, 
everywhere. The solution for rCX follows as 

In the separable variable-labor model with government spending shocks and 
distortionary output taxation, the loglinear capital accumulation equation 
becomes 

where /iT = I., - (z/(1 - z))i2 - l/(1 - r)&, iT = &/(I - T), and ;($ = i4/ 
(1 - T). 
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The solution is once again easiest to state by defining some intermediate 
parameters: 

v* = (1 - N)o,/(N + (1 - N)a,[l - a/(1 - 5)]), 

$11 = (1 - a)v*/(l - z), 

v2 E - zv*/(l - T), 

l//l = z(l - a)/cql - t) - 1, 

$2 = l/(1 - T), 

$3 = - T/Ct(l -T), 

n;* = 1 - /IT - I”;(1 - vg) - 22, 

Once again qCk solves Q2q$ + QIqck + Q. = 0, where now 

Given qck, the solution for yCx follows as 

VW 

(B.9) 

(B.lO) 
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