
A TOOLKIT FOR ANALYSING NONLINEAR DYNAMIC
STOCHASTIC MODELS EASILY

HaraldUhlig1

3.1 Introduction
Researchers often wish to analyse nonlinear dynamic discrete-time stochastic models.
This chapter provides a toolkit for solving such models easily, building on log-linearizing
the necessary equations characterizing the equilibrium and solving for the recursive
equilibrium law of motion with the method of undetermined coefficients.2

This chapter contains nothing substantially new. Instead, the point of it is to simplify
and unify existing methods in order to make them accessible to a large audience of
researchers, who may always have been interested in analysing, say, real business cycle
models on their own, but hesitated to make the step of learning the numerical tools
involved. This chapter reduces the pain from taking that step. The methods here can
be used to analyse most of the models studied in the literature. We discuss how to log-
linearize the nonlinear equations without the need for explicit differentiation and how
to use the method of undetermined coefficients for models with a vector of endogenous
state variables. The methods explained here follow directly from McCallum (1983),
King et al. (1987) and Campbell (1994), among others.3 We provide a general solution
built on solving matrix quadratic equations (see also Binder and Pesaran, 1995), and
provide frequency-domain techniques, building on results in King and Rebelo (1993),
to calculate the second-order moments of the model in its Hodrick-Prescott filtered
version without resorting to simulations. Since the method is an Euler equation based

*I am grateful to Michael Binder, Toni Braun, Paul Klein, Jan Magnus, Ramon Marimon, Ellen
McGrattan, Victor Rios-Rull and Yexiao Xu for helpful comments. I am grateful to Andrew Atkeson for
pointing out to me a significant improvement. An earlier version of this chapter was completed while
visiting the Institute for Empirical Macroeconomics at the Federal Reserve Bank of Minneapolis: I am
grateful for the Institute's hospitality. Any views expressed here are those of the author and not necessarily
those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. This is an updated
version of Discussion Paper 101 at the Institute for Empirical Macroeconomics and of CentER DP 9597.
Further work was done while visiting the Institute for International Economic Studies in Stockholm:
thanks are due to colleagues there, in particular Paul Klein.

Note that the nonlinear model is thus replaced by a linearized approximate model. "Essential"
nonlinearities like chaotic systems are unlikely to be handled well by the methods in mis paper.

3 Campbell even touts the approach followed in his paper as "analytical", but note that in his cases
as well as in ours, one needs to linearize equations and solve quadratic equations. Campbell presumably
attaches the attribute "analytical" to this numerical procedure, since it is rather straightforward indeed
and carrying it out by hand is actually feasible in many cases. Otherwise, every numerical calculation
anywhere could be called "analytical", since it could in principle be carried out and analysed by hand -
it would just take a very long time.
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approach rather than an approach based on solving a social planner problem, solving
models with externalities or distortionary taxation does not pose additional problems.
Since the (nonlinear) Euler equations usually need to be calculated in any case in order to
find the steady state, applying the method described in this paper requires little in terms
of additional manipulation by hand, given some preprogrammed routines to carry out the
matrix calculations of Section 3.4. MATLAB programs to carry out these calculations
given the log-linearized system, are available on my home page4 and are also discussed
in Section 3.9. The method in this chapter therefore allows nonlinear dynamic stochastic
models to be solved easily.

Numerical solution methods for solving nonlinear stochastic dynamic models have
been studied extensively in the literature; see in particular Kydland and Prescott (1982),
the comparison by Taylor and Uhlig (1990) and the methods proposed by various
authors in the same issue, Judd (1991), Hansen and Prescott (1995) and Danthine
and Donaldson (1995). The literature on solving linear quadratic dynamic stochastic
models or linear stochastic difference equations is even larger. The key paper here is
Blanchard and Kahn (1980). Furthermore, there are the textbook treatments in Sargent
(1987b, Chapters IX and XI), as well as Muth (1961), McGrattan (1994) or Hansen etal.
(1994), to name a random few. Subject to applicability, all the methods relying on a
log-linear approximation to the steady state have in common that they will find the same
recursive equilibrium law of motion as the method described in this chapter, since the
linear space approximating a nonlinear differentiable function is unique and "immune"
to differentiable transformations of the parameter space. But while McGrattan (1994)
and Hansen et al. (1994) focus on solving models via maximizing a quadratic objective
function, and while Blanchard and Kahn (1980) solve linear systems by searching for the
stable manifold in the entire system of necessary equations describing the equilibrium
relationships, this chapter by contrast, solves directly for the desired recursive equilib-
rium law of motion. This approach is quite natural. The stability condition is imposed at
the point where a certain matrix quadratic equation is solved. It is shown how this matrix
quadratic equation can be reduced to a standard eigenvalue problem of another matrix
with twice as many dimensions.

Three related contributions are McCallum (1983), which is the key reference for
the method of undetermined coefficients, Ceria and Rios-Rull (1992) and Binder and
Pesaran (1996). These contributions also derive the recursive equilibrium law of motion.
McCallum (1983) reduces the coefficient-finding problem to a problem solvable with

the methods in Blanchard and Kahn (1980), whereas Ceria and Rios-Rull (1992) reduce
the problem to one of solving a matrix quadratic equation as do we, but do not reduce the
matrix quadratic equation problem to a standard eigenvalue problem. Binder and Pesaran
(1995), finally, may be most closely related in that they reduce the matrix quadratic equa-
tion characterizing the solution to an eigenvalue problem as we do. These three contribu-
tions, however, for the most part do not distinguish between endogenous variables which
have to be part of the state vector, and other endogenous variables. Thus applying these
models in somewhat larger systems can result in unnecessarily large and computationally
demanding eigenvalue problems in which "bubble solutions" have to be removed in a

4http: //cwis.kub.nl/~few5/center/STAFF/uhlig/toolkit .dir/toolkit .htm
is the address of the Web site for the programs.
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painstaking fashion, or being forced to reduce the system beforehand to make it fit their
description.5 Furthermore, recent related contributions include Christiano and Valdivia
(1994), King and Watson (1995; 1997), Sims (1999) and Klein (1998).

But all these technical differences to the existing literature are not in any way essen-
tial. It shall be stressed again that the main purpose and merit of this chapter is to make
solving nonlinear dynamic stochastic models easy. In fact, this paper describes the entire
method as a "cook-book recipe", which should be of great practical use to Ph.D. stu-
dents and researchers alike. Since the focus here is entirely on the computational aspect
of studying these models, some issues are entirely left aside. In particular, the issue of
existence or multiplicity of equilibria as well as the reasons for concentrating on stable
solutions are not discussed. The methods in this chapter should therefore not be applied
blindly, but only in light of, say, McCallum (1983), Stokey et al. (1989) and the related
literature.

The outline of the paper will be evident from the description of the general procedure
in the next section.

3.2 The general procedure
The general procedure for solving and analysing nonlinear dynamic stochastic models
consists of the following steps.
1. Find the necessary equations characterizing the equilibrium, i.e. constraints, first-

order conditions, etc.; see Section 3.8.1.
2. Pick parameters and find the steady state(s); see Section 3.8.1.
3. Log-linearize the necessary equations characterizing the equilibrium of the system to

make the equations approximately linear in the log-deviations from the steady state;
see Sections 3.3 and 3.8.1.

4. Solve for the recursive equilibrium law of motion via the method of undetermined
coefficients, employing the formulae of Section 3.4.

5. Analyse the solution via impulse-response analysis and second-order-properties, pos-
sibly taking account of, say, the Hodrick-Prescott filter. This can be done without
having to simulate the model; see Section 3.6.
The next section skips directly to step 3 of the procedure outlined above and describes

how to log-linearize nonlinear equations without explicit differentiation. Section 3.8.1
studies Hansen's (1985) benchmark real business cycle model as a prototype example,
in which calculation of the Euler equations, the steady state and the log-linearization is
carried out to see how this method works. Once a linearized system has been obtained,
the methods in Section 3.4 provide the desired recursive equilibrium law of motion.

3.3 Log-linearization and model formulation
Log-linearizing the necessary equations characterizing the equilibrium is a well-known
technique. In the context of real business cycle models, log-linearization has been pro-
posed in particular by King et al. (1987) and Campbell (1994). Log-linearization also

furthermore, McCallum (1983) uses eigenvalue methods also to solve some other equations in his
method, which are solved here by a simple linear equation solution techniques; compare his solution to
equation (A.6) in his paper to equation (3.26).
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appears frequently in text books such as Obstfeld and Rogoff (1996, pp. 503-505).
Nonetheless, the technique often seems to create more headaches than it should. It may
be useful for the purposes of this chapter to review how it is done. Section 3.8.1 simplifies
the approach of Campbell (1994). Readers who are familiar enough with log-linearization
or have their model already in linear form are advised to skip directly to Section 3.4.

The principle is to use a Taylor approximation around the steady state to replace
all equations by approximations, which are linear functions in the log-deviations of the
variables. Of course, for larger models, it may be convenient to obtain the linearized
versions from the original nonlinear equations by numerical differentiation: there is
nothing wrong with that, and doing so can speed things up in routine work. But the
linearization step itself is not a cumbersome one, as we shall see.

Formally, let Xt be the vector of variables, X their steady state and

the vector of log-deviations. The vector 100*( tells us by what percentage the variables
differ from their steady-state levels in period t. The necessary equations characterizing
the equilibrium can be written as

3.1)
3.2)

where /(O, 0) = 1 and g(Q, 0) = 1, i.e. the left-hand side of (3.1) and (3.2). Takin
first-order approximations around (xt,xt-i) = (0, 0) yields6

One obtains a linear system in xt and xt~\ in the deterministic equations and xt+\ and
Xt in the expectational equations. This linear system can be solved with the method of
undetermined coefficients, described in Section 3.4.

In the large majority of cases, there is no need to differentiate the functions / and g
formally. Instead, the log-linearized system can usually be obtained as follows. Multiply

6An alternative to approximate (3.2) rewrites it as

where g = log g. Assuming xt and xt+i to be (approximately) conditionally jointly normally distributed
with an (approximately) constant conditional variance-covariance matrix, and assuming that

3.3)

independent of t (rather than log g(0, 0) = 0) yields

using E[ex] = e£[x]+Vartx]/2 for normally distributed variables. The two ways of approximating (3.2)
differ essentially only in their choice for g(0, 0), since gj = gi if g(0, 0) = 1.
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out everything before log-linearizing. Replace a variable Xt with Xt — Xex', where
xt is a real number close to zero. Likewise, let yt be a real number close to zero. Take
logarithms, where both sides of an equation only involve products, or use the following
three building blocks, where a is some constant:

For example, these building blocks yield

Constants drop out of each equation in the end, since they satisfy steady-state rela-
tionships, but they are important in intermediate steps: compare, for example, the two
equations above.

Rather than describing the general principles further, it is fruitful to consider a specific
example instead. Take Hansen's (1985) benchmark real business cycle model and log
linearize it in the manner described above. Details are described in Section 3.8.1. One
obtains

(3.4)
(3.5)

(3.6)

(3.7)
3.8)
3.9)

t(3.10)

Here, ct denotes the log-deviation of consumption, while C denotes the steady-state
value of consumption, etc. Those familiar with Hansen's model will readily recognize
equation (3.4) to be the first-order condition with respect to consumption Ct (A.r is the log-
linearized Lagrange multiplier on the resource constraint), equation (3.5) to be the first-
order condition with respect to labour, equ ation (3.6) to be the equation defining the return
on capital, equation (3.7) to be the log-linearized version of the Cobb-Douglas produc-
tion function, equation (3.8) to be the resource constraint, equation (3.9) to be the Lucas
asset pricing equation, and equation (3.10) to show the evolution of the exogenous total
factor productivity. Depending on taste, one obtains a different set of equations which
are, however, all equivalent if the calculations are done correctly. For example, one may
decide to eliminate kt by substituting — c, right away in all equations.

up to a constant

up to a constant
up to a constant
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Note that we use the dating convention kt-\ for capital created in period / — 1 and
used in production in period t: in general, we shall date all variables with respect to the
date at which they are known. This contrasts with the notational practice in parts of the
literature, but there obviously is no substantial difference: it is just important to keep this
in mind when applying the method.

Note that all equations only contain variables dated t, t — 1 or, possibly, expectations
as of time t of variables dated t + 1. This is the form we need to proceed further. For
some models, this may require introducing "dummy" variables to capture further lags of
variables or expectations of variables further into the future. So instead of, for example,

write

and instead of

write

(3.11)
(3.12)

Strictly speaking, the last equation violates our dating convention, but never mind.
Once a linear or linearized system such as (3.4)-(3.10) is obtained, one can proceed

to solve for its dynamics.

3.4 Solving recursive stochastic linear systems with the
method of undetermined coefficients

This section describes how to find the solution to the recursive equilibrium law of motion
in general, using the method of undetermined coefficients. MATLAB programs perform-
ing the calculations in this section are available on my home page. The idea is to write all
variables as linear functions (the "recursive equilibrium law of motion") of a vector of
endogenous variables xt^\ and exogenous variables zt, which are given at date t - that
is, which cannot be changed at date t. These variables are often called state variables or
predetermined variables. In the real business cycle example of Section 3.8.1, these are at
least kt-i and zt, since they are clearly unchangeable as of date t and, furthermore, show
up in the linearized equations system. In principle, any endogenous variable dated t -1 o
earlier could be considered a state variable. Thus, in Section 3.4.1, we use brute force and
simply declare all endogenous variables to be state variables, whereas in Section 3.4.2
we try to be a bit more sensitive and exploit more of the available structure. The latter
is typically done in practice; see, for example, Campbell (1994). Both subsections will
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characterize the solution with a matrix quadratic equation; see also Ceria and Rios-Rull
(1992) and Binder and Pesaran (1995). Section 3.4.3 shows how to solve that equation.
For models with just one endogenous state variable, such as the real business cycle model
of Section 3.8.1 when analysed with the more structured approach in Section 3.4.2, th
matrix quadratic equation is simply a quadratic equation in a real number: for an explicit
example and its high-school algebra solution, see Section 3.8.3. This case is contained
as a special case of the general solution in Section 3.4.3. In Section 3.5 we discuss
our solution method, and compare it in particular to the Blanchard and Kahn (1980)
approach.

3.4.1 With brute force...
To begin, one may simply use all variables without distinction as a vector of endogenous
state variables7 xt-i of size m x 1 or as a vector of exogenous stochastic processes zt of
size k x 1. It is assumed that the log-linearized equilibrium relationships can be written
as

(3.13)

(3.14)

where F, G, H, L and M are matrices collecting the coefficients. It is assumed that N
has only stable eigenvalues. The real business cycle example (3.4)-(3.10) above can be
easily written in this form. For example, the resource constraint (3.8) would be

since ct, kt, kt~\ and yt are already known at date t and hence nothing changes when
one takes their expectations given all information up to date t. Note that F = L = 0 for
this equation. Of course, there are other equations in the real business cycle model, and
one of them involves non-zero entries for F and L.

What one is looking for is the recursive equilibrium law of motion

(3-15)

that is, matrices P and Q such that the equilibrium described by these rules is stable. The
solution is characterized in the following theorem; see also Binder and Pesaran (1995).
The characterization involves a matrix quadratic equation; see equation (3.16). Sec-
tion 3.4.3 discusses how it can be solved. For the purpose of that section, let m be th
length of the vector xt, and let / = n = 0.

Theorem 3.1 If there is a recursive equilibrium law of motion solving equations (3.13),
and (3.14), tlien the following must be true.

7 To make this work really general, one should actually not only include all the variables dated t — 
but also all the variables dated t - 2 as part of the state vector xt-\. Even more is required if the
equations already contain further lags of endogenous variables, see also footnote 8. Usually, however,
this is unnecessary.
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1. P satisfies the (matrix) quadratic equation

(3.16)

The equilibrium described by the recursive equilibrium law of motion (3.15) and
(3.14) is stable if and only if all eigenvalues ofP are less than unity in absolute value.

2. Given P, let V denote the matrix

Then,

(3.17)

where vec(-) denotes columnwise vectorization.

Obviously, if the matrix V in this theorem is invertible, then multiplication of equation
(3.17) by V~l yields the unique solution for Q.

Proof Plugging the recursive equilibrium law of motion (3.15) into equation (3.13)
twice and using (3.14) to calculate the expectations yields

(3.18)

The coefficient matrices of xt-i and Zt need to be zero. Equating the coefficient of xt-\ to
zero yields equation (3.16) for P. Taking the columnwise vectorization of the coefficient
matrices of Zt in this equation and collecting terms in vec(Q) yields the equation (3.17)
for Q.

3.4.2 . . . or with sensitivity
We now exploit more of the structure in the linearized model. Analysing the equations
of the real business cycle example of Section 3.8.1, one sees that the only endogenous
variable dated t — 1 which shows up in any of the equations is capital, kt-\. It is thus
a reasonable guess to treat kt-\ as the only endogenous state variable together with the
exogenous state variable Zt- This principle is general: in the vast majority of cases, this is
how one can identify the vector of state variables.8 In practice, one often sees researchers
exploiting some of the equilibrium equations to get rid of some variables, and have only
a few variables remaining. For the real business cycle example of Section 3,8.1, it is
actually possible to reduce everything to a single equation for the endogenous variables,
containing only kt+\, kt, and kt-\. Often, one sees reductions to a system involving two
equations in two endogenous variables such as \t and kt-\ (see e.g. Campbell, 1994; and

8There are exceptions. Variables chosen at a date earlier than t — 1 may need to be included: this can
be treated as in equations (3.11), (3.12). One may also need to add additional variables like e.g. c(_i
or fcr_2 as state variables, even though they don't show up in the equations with these dates, when the
model exhibits sun spot dynamics. This can be done in the same manner, but one needs to be careful with
interpreting the results. Appendix 3.8 and in particular 3.8.8 elaborates on this in more careful detail.
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Section 3.8.2 below), presumably because this allows thinking in terms of a state-space
diagram (see e.g. Blanchard and Fisher, 1989, Chapter 2). However, there is no reason
to bother with "eliminating" variables by hand, using some of the equations: since this
is all just simple linear algebra applied to a system of equations, it is far easier to leave
all the equations in, and leave it to the formulae to sort it all out. That is what is don
below.

We thus make the following assumptions.9 There is an endogenous state vector xt, of
size in x 1, a list of other endogenous variables ("jump variables") yt, of size n x 1, and
a list of exogenous stochastic processes Zt, of size k x 1. The equilibrium relationships
between these variables are

(3.19)

(3.20)

(3.21)

where it is assumed that C is of size I x n, I > n and10 of rank n, that F is of size
(m + n — /) x n, and that N has only stable eigenvalues. Note that one could have
written all equations (3.19) in the form of equation (3.20) with the corresponding entries
in the matrices F, J and L set to zero. Essentially, that is what is done in Section 3.4.1.
Instead, the point here is somehow to exploit the structure inherent in equations of the
form (3.19), which do not involve taking expectations.

What one is looking for is the recursive equilibrium law of motion

(3.22)

(3.23)

that is, matrices P, Q, R, and S such that the equilibrium described by these rules is
stable. The solution is characterized in the next theorem. To calculate the solution, one
needs to solve a matrix quadratic equation: how this is done is explained in Section 3.4.3.

The important special case / = n is treated in Corrollary 3.3. The special case
/ = n = 0 was the topic of Section 3.4.1.

Theorem 3.2 If there is a recursive equilibrium law of motion solving equations (3.19),
(3.20), and (3.21), then the coefficient matrices can be found as follows. Let C+ be the
pseudo-inverse^1 ofC. Let C be an (I — n) x / matrix whose rows form a basis for the
null space12 ofC'.

9Note that the notation differs from the notation in Section 3.3.
10The case / < n can be treated as well: the easiest approach is simply to "redeclare" some other

endogenous variables to be state variables instead - that is, to raise m and thus lower n - until I = n.
"Thepseudo-inverseofthematrixCisthenx/matrixC+satisfyingC+CC+ = C+andCC+C = C.

Since it is assumed that rank(C) > n, one obtains C+ = (C'C)~1C'\ see Strang (1980, p. 138). The
MATLAB command to compute the pseudo-inverse is pinv(C).

12C° can be found via the singular value decomposition of C'; see Strang (1980, p. 142). The MATLAB
command for computing C° is (null(C'))'.
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1. P satisfies the (matrix) quadratic equations

(3.24)

(3.25)

The equilibrium described by the recursive equilibrium law of motion (3.22), (3.23)
and by (3.21) is stable if and only if all eigenvalues ofP are less than unity in absolute
value.

2. R is given by

3. Given P and R, let V be the matrix

where 7/c is the identity matrix of size k x k. Then

where vec(-) denotes columnwise vectorization.

Obviously, if V in this theorem is invertible, then multiplication of equation (3.26)
with V~l yields the unique solution for Q.

Proof Plug the recursive equilibrium law of motion into equation (3.19). This yields

(3.27)

which has to hold for arbitrary xt-\ and zt- Thus, the coefficient matrices on xt-\ and zt
in (3.27) are zero. Plugging the recursive equilibrium law of motion into equation (3.20)
twice and using (3.21) yields

(3.28)

Again, the coefficient matrices on xt-\ and zt need to be zero. Taking the columnwise
vectorization of the coefficient matrices of zt in equations (3.27) and (3.28) and collecting
terms in vec(£>) and vec(S) yields the formula for Q and S. To find P and thus R, rewrite
the coefficient matrix on xt-\ in equation (3.27) as

(3.29)

noting that the matrix [(C+)', (C°)'] is non-singular and that C°C = 0; see Strang
(1980, p. 88). Use (3.29) to replace R in the coefficient matrix on xt-\ in (3.28), yielding
(3.25). Note finally that the stability of the equilibrium is determined by the stability of
P, since N has stable roots by assumption.

(3.26)
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Corollary 3.3 Suppose that I = n, that is, that there are as many expectational equa-
tions as there are endogenous state variables. If there is a recursive equilibrium law of
motion solving equations (3.19), (3.20), and (3.21), then their coefficient matrices can
be found as follows.
1. P satisfies the (matrix) quadratic equation

(3.30)

The equilibrium described by the recursive equilibrium law of motion (3.22), (3.23)
and by (3.21) is stable if and only if all eigenvalues ofP are less than unity in absolute
value.

2. R is given by

3. Q satisfies

(3.31)

where l^ is the identity matrix of size k x k, provided the matrix which needs to be
inverted in this formula is indeed invertible.

4. S is given by

Proof This corollary can be obtained directly by inspecting the formulae of Theorem 3.2
above for the special case / = n. In particular, C+ is just the inverse of C. Alterna-
tively, a direct proof can be obtained directly by following the same proof strategy as
above.

The formulae in these theorems become even simpler if m = 1 or A: = l . I f m — 1,
there is just one endogenous state variable and the matrix quadratic equation above
becomes a quadratic equation in the real number P, which can be solved using high-
school algebra: this is the case for the real business cycle model and thus the case which
Campbell (1994) analyses. If k = 1, there is just one exogenous state variable, in which
case the Kronecker product <g> in the formulae above becomes multiplication, and in
which case vec(<2) — Q and vec(S) = S, since Q and S are already vectors rather than
matrices.

3.4.3 Solving the matrix quadratic equation
To solve the matrix quadratic equations (3.16) or (3.24), (3.25) for P, write them as

3_32)
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For equations (3.24) and (3.25), define

where Qi-n,m is an (/ — n) x m matrix with only zero entries. In the special case I = n,
the formulae for fy, F and 0 become slightly simpler:

For equation (3.16), simply use * = F, F = —G and © = -H.
Equation (3.32) can now be solved in two ways. In Theorem 3.4, we will solve it

by turning it into a generalized eigenvalue and eigenvector problem,13 for which most
mathematical packages have preprogrammed routines.14 In Theorem 3.5, we will solve
it, using the QZ method.

Recall that a generalized eigenvalue A and eigenvector s of a matrix E with respect
to a matrix A are defined to satisfy

(3.33)

A standard eigenvalue problem is obtained if A is the identity matrix. More generally,
the generalized eigenvector problem can be reduced to a standard one, if A is invertible
by calculating standard eigenvalues and eigenvectors for A^1 E instead.

Theorem 3.4 To solve the quadratic matrix equation

(3.34)

for the m x m matrix P, given m x m matrices F and 0, define the 2m x 2m matrices
H and A by

13 An earlier version of this chapter proposed to study an altered version of these equations by postmul-
tiplying equation (3.24) with P. This altered equation, together with (3.25), can then often be reduced to a
standard rather than a generalized eigenvalue problem, but has the drawback of introducing spurious zero
roots. The version presented here does not involve this alteration, and thus does not introduce spurious
zero roots. This update is due to Andy Atkeson (1997), and I am very grateful to him for pointing it out
to me. Any errors here are mine, of course.

l4The MATLAB command for finding the generalized eigenvalues and eigenvectors is eig(H,A).



42 Uhlig

and

w/zere 7m M f/ze identity matrix of size m, and where Om.m is the m x m matrix with only
zero entries.
1. If s is a generalized eigenvector and X the corresponding generalized eigenvalue of

S with respect to A, then s can be written as s' = [Xxf, x']for some x e Rm.
2. If there are m generalized eigenvalues X , . . . , A,m together with generalized eigenvec-

tors s\, ... ,smofE with respect to A, written as s[ = [A,^, x't] for some xt 6 Rm,
and if(x\,... , xm) is linearly independent, then

is a solution to the matrix quadratic equation (3.34), where £1 = [x\,... , xm] and
A = diag(A, . . . , A.m). The solution P is stable if A.,; |< 1 for all i = I,... ,m.
Conversely, any diagonalizable solution P to (3.34) can be written in this way.

3. Ifm = 1, then the solutions P to equation (3.34) are given by

ifV ^0, and by

ifty =OandT ^ 0.

Proof First, examine the last m rows of equation (3.33) to see that any eigenvector s
for some eigenvalue A of the matrix E with respect to A can indeed be written as

for some x e K" because of the special form of 3 and A. Examining the first m rows
of equation (3.33) then shows that

(3.35)

It follows that

and hence

as claimed, after multiplying with fi"1 from the right.
Reversing the steps shows that any diagonali/able solution P to (3.34) can be written

in this way.
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One further generalization step can be made by using the QZ decomposition instead
of a (generalized) diagonalization; see, in particular, Sims (1999). In particular, the
QZ decomposition can deal with repeated eigenvalues easily, and is thus the preferred
method. The next theorem shows how it works, but before stating it, we need an additional
piece of notation. For any 2m x 2m matrix X, say, write its partition as

where Xij denotes a submatrix of size m x m. Likewise, any vector v e R2m shall be
partitioned in this way.
Theorem 3.S To solve the quadratic matrix equation

(3.36)

for the m x m matrix P, given m x m matrices F and 0, define the 2m x 2m matrices
3 and A by

and

where Im is the identity matrix of size m, and where Om^m is the m x m matrix with only
zero entries.

Find the QZ decomposition (or generalized Schur decomposition) of A. and S, that
is, find unitary matrices Y and Z as well as upper triangular matrices £ and $ such
that11

Assume that Z2\ and Y2i are invertible.
1. The matrix

solves the matrix quadratic equation (3.36).

The matrix Y is unitary if and only ifY'Y = I^m > where Y' denotes the complex conjugate transpose
of 7.

16Matrix Y is usually denoted by Q, but we have used that symbol for another matrix already.
17Such a QZ decomposition always exists, although it may not be unique.

15
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2. Let <f>ij be the (i, j)th element of<i> and, likewise, let ofy be the (i, j)th element o/E.
Suppose that the QZ decomposition has been chosen so thatthe ratios \<t>n/cu of the
diagonal elements are in ascending order.18 Furthermore, assume that 4>mm/omm <
1. Then, P is stable in the sense that Pnx —> 0 as n -> oo/or any x e Rm.

Proof We first show the first claim, that P indeed solves the matrix quadratic equation
(3.36). We need to show that

for any vector x e Rm. Equivalently, define v(x) e E2m via

We need to show that

(3.37)

or

for any x € Rm. Equation (3.38) shows that the claim (3.37) is already trivially true for
the last m rows.

Define w(x) — Zv(x) and note that

Equation (3.37) can therefore be written as

which needs to be shown. Comparing the last m rows of equations (3.38) and (3.39) and
using the invertibility of Y2\, we see that

Substituting this into the first m rows of (3.39) and comparing it to equation (3.38), we

18This can always be achieved, starting from a given QZ decomposition, by "swapping" axes in
appropriate pairs. The MATLAB command to compute one QZ decomposition for A and B is qz(A, B).
An algorithm for MATLAB for performing the swapping has been written by C. Sims to accompany
his paper, Sims (1996). The reader is referred to these programs or to the literature on linear algebra for
further discussion.

(3.38)

(3.39
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finally see that

as claimed.
We now show the second claim about stability. For any x e Wl as above, let

and

Fix jc e Rm. Note that Pnx —> 0 if and only if v(P"x) —> 0, which is true if and
only if w(Pnx) —> 0. Let n > 1. Note that Av(Pnx) — Sv(Pn~lx) or, equivalently,
'Ew(Pnx) = <&w(Pn — Ix). Write out the latter expression explicitly. Keep in mind
that (w(Pn~lx))2 - (w(Pnx))i = 0. The first m rows deliver

where E j i must be invertible and where (E j~j $ 11J —>• 0 due to our assumption about
the diagonal elements. Hence,

completing the proof.
3.5 Discussion
Theorems 3.4 links the approach used here to Blanchard and Kahn (1980), which is
the key reference for solving linear difference equations. A more detailed discussion, in
particular with respect to the differences between saddle-point stable models vis-a-vis
models with indeterminacies can be found in Section 3.8.

Consider solving the second-order difference equation

(3.40)

The approach in Blanchard and Kahn (1980) amounts to finding the stable roots of E by
instead analysing the dynamics of the "stacked" system s't = [x't, x't_\\,

that is, by reducing (3.40) to a first-order difference equation. The approach here solves
for the matrix P in the recursive equilibrium law of motion xt+\ = Pxt. Theorem 3.4
above states that both approaches amount to the same problem. The advantage of the
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method here is that it is easily applied to the entire system (3.19)-(3.21), reducing
it eventually to (3.40), while finding the stable roots in the entire system given by
these equations and at the same time taking care of the expectation operators, using the
Blanchard and Kahn (1980) procedure is often perceived as complicated. Fundamentally,
there is no difference.

To apply Theorem 3.4, one needs to select m out of 2m possible eigenvalues. Note
that P has only non-zero eigenvalues if the state space was chosen to be of minimal
size: attention can be restricted to the roots | A, | > 0 in that case. In general, there may
be quite a bit of choice left. In practice, however, there will often be exactly m stable
eigenvalues remaining so that the stable solution is unique.19 For a one-dimensional
vector of endogenous state variables, this condition is called saddle-point stability. The
literature on solving linear rational expectations equilibria typically assumes this condi-
tion to hold or shows it to hold in social planning problems under reasonable conditions;
see Blanchard and Kahn (1980), Kollintzas (1985) and Hansen et al. (1994). If there
are fewer stable eigenvalues than endogenous state variables, the equilibrium might be
inherently unstable. The method above then still permits calculation of an equilibrium
which satisfies the nonlinear equilibrium conditions at least locally. In particular, in mod-
els involving more than one agent or sector or country, one may find as many unit roots
as there are more agents (sectors, countries) than one since shocks may affect the relative
wealth (capital) of any two agents (sectors, countries) and thus may result in permanent
changes in their consumption paths (or capital stocks): in these cases, the method above
allowing for unit roots still gives useful results, which obviously should then be used
with some care. These unit roots typically already show up as an undetermined steady
state: any of the possible steady states can then serve as a starting point for the dynamic
calculation, keeping in mind that a simulation based on the dynamics calculated here
will eventually wander away too far to be numerically useful. If there are more stable
eigenvalues than endogenous state variables, enlarging the number of endogenous state
variables by including further lagged values might help. Nonetheless, the presence of an
excess of stable roots may then point to the existence of sunspots or endogenous fluc-
tuations; see, example Farmer and Guo (1994). These matters are discussed in greater
detail in Section 3.8.

If not all eigenvalues of E are distinct, P in turn might have repeated eigenvalues.
Since the eigenspace for a repeated eigenvalue is (usually) multi-dimensional, there will
be infinitely many choices for the eigenvectors and hence infinitely many choices for P
in that case. Note, for example, that for any given A and any three real numbers a,b,c
satisfying a1 + be = k2, all matrices

19 Another approach to select a unique solution is given in McCallum (1983), who suggests using those
roots that can be obtained continuously from the zero roots of the equation * />2 — TP — a 6) for a = 0,
as a changes from 0 to 1. However, not only is following these roots as functions of a computationally
very demanding, it is also the case that uniqueness is lost once two or more such paths cross each other.
If these paths do not cross in a particular application, and if additionally all roots for all a are positive
real numbers, say, then the McCallum proposal simply amounts to using the roots of minimal value. The
MATLAB programs supplied by the author use the roots of minimal absolute value, subject to eliminating
spurious zero roots, and try to use complex roots in conjugate pairs, as described below.
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solve

These cases are rare in practice, since 3 is diagonalizable with distinct eigenvalues
generically in the coefficients of the system (3.19)-(3.21). In any case, the QZ method
can deal with them without difficulty; see Theorem 3.5.

More disconcerting is the possibility that some of the roots may be complex rather
than real. Consider, for example, * = /2, F = —/2 and

Using the theorem above, one obtains exactly two stable roots, which happen to be
complex, Ai ? 2 = 0.3±0.4i = 0.5e±m, where a « 0.9273. Their associated eigenvectors
are complex, too. Calculating P results in a matrix with only real entries, however,
given by

Since S is a real-valued matrix, complex eigenvalues only arise in complex conjugate
pairs. When using both roots of a complex conjugate pair to calculate A and thus P,
the resulting solution should be a real-valued matrix. In order to do this, one may have
to enlarge the state space of endogenous state variables to be at least two-dimensional;
see again Farmer and Guo (1994) for an example. The complex roots then give rise to
endogenous damped cycles of frequency a. Again, see Section 3.8 (in particular, Section
3.8.8) for further discussion.

3.6 Interpreting the results
The results obtained, that is, the recursive equilibrium law of motion

can be used to examine model implications. Since xt, yt and zt are log-deviations, the
entries in P, Q, R, S and N can be understood as elasticities and interpreted accordingly;
see, for example, Campbell (1994).

Impulse responses to a particular shock e\ can be calculated by setting XQ = 0, y$ = 0
and zo = 0, as well as et — 0 for t > 2, and recursively calculating zt and then xt and
yt, given xt-i, yt-\,Zt-\ and €t for t = 1, . . . , T with the recursive equilibrium law of
motion and the law of motion for zt •

To find the second moment properties of the model such as variances and autocorrela-
tions of certain variables, as well as the small-sample properties of their estimators, sim-
ulation methods are often used. Before calculating these moments, the Hodrick-Prescott
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filter is typically applied. This section demonstrates a frequency-domain technique to
obtain these moments (albeit without the small-sample properties of their estimators)
without the need for any simulations.20 Obviously, the methods here do not deliver
properties of the small-sample distribution, which may be necessary for testing.

The matrix-valued spectral density for [x't, z't]' is given by

where 7/{ and Im are the identity matrices of dimension k and m; see formula (10.4.43) in
Hamilton (1994). Two ways to calculate the matrix-valued spectral density for the entire
vector of variables st = [x't, y't, z't]' are

where

where P+ is the pseudo-inverse of P and where the last equality exploits st — W[x't, z't]',
replacing xt-\ with P+xt — P+Qzt in the recursive equilibrium law of motion for yt.
The Hodrick-Prescott filter aims to remove a smooth trend rt from some given data st
by solving

The solution is a linear lag polynomial rt = st — rt = h(L)st which has the transfer
function

(see, King and Rebelo, 1993). Thus, the matrix spectral density of the Hodrick-Prescott
filtered vector is simply

20Some of these methods were originally contained in an early version of Uhlig and Xu (1996), but
were eventually deleted from that paper.
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from which one can obtain the autocorrelations of rt in the time domain via an inverse
Fourier transformation,

see formula (10.4.4) in Hamilton (1994). Inverse Fourier transformations are part of
many numerical packages.

3.7 Conclusions
We have provided a toolkit to analyse nonlinear dynamic stochastic models easily. The
main contribution of this chapter is to simplify and unify existing approaches, show-
ing how to log-linearize the necessary equations characterizing the equilibrium without
explicit differentiation, to provide a general solution to a linearized system using the
method of undetermined coefficients, allowing in particular for a vector of endogenous
states, and to provide simulation-free frequency-domain based method to calculate the
model implications in its Hodrick-Prescott filtered version. These methods are easy to
use if a numerical package such as MATLAB is available. This chapter should therefore
be useful for anybody interested in analysing nonlinear stochastic dynamic models.

3.8 Appendix: Undetermined Coefficients versus Blanchard-Kahn:
two examples

The purpose of this appendix is to go through the log-linearization exercise for one
model in detail, to solve the model "by hand" and to relate the method of undetermined
coefficients to the Blanchard-Kahn approach for the case of saddle-point stability and
for the case of indeterminacy.

3.8.1 Hansen's real business cycle model: saddle-point stability
The following model is the benchmark real business cycle model due to Hansen (1985)
and explained there in detail. Here, the mathematical description shall suffice. The main
point of this example, as far as we are concerned, is to explain how to perform the first
three steps of the general procedure.

The social planner solves the problem of the representative agent

such that

(3.41)

where the €t are independently and identically normally distributed with zero mean and
variance a2, Ct is consumption, Nt is labour, I, is investment, Yt is production, Kt is
capital, Zt is the total factor productivity, and A, ft, 8, p, Z, tjf and a2 are parameters.
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Collapse the first two equations into one, and let A( be its Lagrange multiplier. The
first-order conditions are

(3.42)

where

(3.43)

Note that we wrote the Lagrange multiplier as A^ rather than Xt for the sake of
consistency with our notational convention to use lower-case letters for log-deviations.
Equation (3.42) is the Lucas (1978) asset pricing equation which typically arises in these
models.

In contrast to some of the real business cycle literature and to avoid confusion in the
application of the method in Section 3.4, it is very useful to stick to the following dating
convention. A new date starts with the arrival of new information. If a variable is chosen
and/or (eventually) known at date t, it will be indexed with t. Use only variables dated t
and t — I in deterministic equations and variables dated t + l,t and t — 1 in equations
involving expectations Et[-].

The steady state for the real business cycle model above is obtained by dropping
the time subscripts and stochastic shocks in the equations above, characterizing the
equilibrium. Formally, this amounts to finding steady-state values such that /(O, 0) = 1
and g(0, 0) = 1 in the notation of Section 3.3.21 For example, equations (3.42) and
(3.43) result in

where bars over variables denote steady-state values. One needs to decide what one
wants to solve for. If one fixes f) and 5, these two equations will imply values for R and
Y/K. Conversely, one can fix R and Y/K and then these two equations yield values for
P and S. The latter procedure maps observable characteristics of the economy into "deep
parameters", and is the essence of calibration; see Kydland and Prescott (1991).

Introduce lower-case letters to denote log-deviations: write

21Alternatively, find the steady state so that (3.3) is satisfied. This is, however, rarely done.
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for example. The resource constraint (3.41) then reads

This can be written approximately as

Since C + SK — Y due to the definition of the steady state, the constant terms drop out22

and one obtains

(3.44)

The resource constraint is now stated in terms of percentage deviations: the steady-
state levels in this equation rescale the percentage deviations to make them comparable.
Note that no explicit differentiation is required to obtain the log-linearized version of
the resource constraint: log-linearization is obtained just by using the building blocks
described in section 3.3.

Similarly log-linearizating the other equations, one obtains:

#
(i)

(ii)
(iii)

(iv)

(v)
(vi)

(vii)

Equation Log-linearized version

The equations are written so that only variables dated t, t — 1 and expectation at date t
of variables dated t + 1 appear. To find the state variables, one needs to find all (linear
combinations of) variables dated t — 1 in these equations: the endogenous state vari-
able is capital, kt-i, whereas the exogenous state variable is the technology parameter,
Zt-i- Note that there are as many expectational equations as there are endogenous state
variables.

3.8.2 Simplify
The coefficients of the equations above need to be collected in the appropriate matrices
to restate these equations in the form required for Section 3.4: this is a straightforward

22Another way to see that constants can in the end be dropped is to note that the steady state is
characterized by ct = kt — yt =kt~\ = 0. If one replaces all log-deviations with zero, only the constant
terms remain, and that equation can be subtracted from the equation for general ct,kt, yt and kt- \ above.
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exercise. Here, however, we plan to proceed to solve the model "by hand". Aside from
a bit of algebra, this turns out to be reasonably easy to do.

Formally, equations (i)-(iv) in their log-linearized form can be solved for ct,nt,yt, rt
in terms of kt, kt and zt at leads and lags by matrix inversion: the solution can then be
used to substitute out these variables in equations (v) and (vi). Doing it by hand proceeds
as follows. Replace nt in (iv) with (ii):

Now, eliminate ct,nt, y(, rt in (v) and (vi). Using the abbreviations

we obtain

(3.45)

(3.46)

(We keep OLA, for later use. Obviously, we could drop it here.)

3.8.3 Method 1: Undetermined coefficients
Postulate that

(3.47)

(3.48)

Note that r/xtc etc. can be interpreted as elasticities: if kt-\ = 0.01, that is, if Kt~\
deviates from its steady state by 1 per cent, and zt = 0, then kt = 0.01 * TJXK, that is, A;
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deviates from its steady state by r/xK Per cent. In terms of the notation in Section 3.4:

Plug the postulated relationships into equations (3.45) once and (3.46) "twice" and
exploit Et[zt+\\ = i/fZt, so that only kt-\ and zt remain:

Compare coefficients.
1. On^_i:

Solve the first equation for YJ^K and substitute out in the second. One gets the char-
acteristic quadratic equation

(3.49)

solvable with the usual formula:

(3.50)

Note finally that

to see that at most one root is stable. Use that one. Calculate r}xK-
2. Onzt:

Given that we already know r/xK, these two equations are two linear equations in 77^
and /j^z, which can be solved easily:
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3.8.4 Method 2: Blanchard-Kahn
This section is inspired by Blanchard and Kahn (1980) as well as the work by Roger
Farmer and his colleagues, in particular Farmer (1993). Let <j>t be the prediction error in
equation (3.46),

(3.51)

Write this equation together with equation (3.45) and the equation for zt as a three-
variable first-order difference equation,

where23

(3.52)

(3.53)

Multiply by X and diagonalize the matrix X Y:

where £2 is diagonal,24 containing the eigenvalues u)\, 0)2, 0)3 • To be a little more explicit,
note that

In particular, the characteristic equation for the eigenvalues is given by

(3.54)

23The notation here differs from the notation in Theorem 3.5.
24In general, X may not be invertible, in which case it is better to try to solve a generalized eigenvalue

problem. Furthermore, it may be the case that £2 is not diagonalizable. One can then use the QZ method
instead; see recent papers by Sims (1999), King and Watson (1995, 1997) and Klein (1998).
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Comparing the expression in the first bracket to equation (3.49), we see that one can pick
(oi to be the explosive root in (3.50), MI to be the stable root in (3.50) and 0)3 = i/r. Let

so that the first-order matrix difference equation can be written in "decoupled" form as

(3.55)

(To compare this to Farmer, note that he usually calculates u>i as roots A;. There is no
substantive difference.) What can we learn from this?
1. The first of these three equations can be iterated forward to give

Taking conditional expectations with respect to t on both sides, we see that

This thus imposes one linear restriction on the vector \kt-\, A(, zt~\',

It turns out that this linear restriction can be written as

with the same coefficients TJ^K and rj^ calculated in Section 3.8.3.z
2. Furthermore, we obtain

which imposes a linear relationship between the forecast error fa+i and the produc-
tivity innovation et+i,

This too turns out to be a restatement of what we have already found in Section 3.8.3:
with the decision rules there, one can calculate
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3. Equipped with this knowledge, replace fa+i, A,f and Xt+\ in the second equation in
(3.55). Additionally taking conditional expectations with respect to f ,25 this equation
in (3.55) now turns out to be rewritable as

with the coefficients calculated in Section 3.8.3.
4. Finally, the third equation in (3.55) is the original equation

We see that we re-created the solution found in Section 3.8.3.

3.8.5 Farmer's model: Indeterminacy
In Farmer's (1993) model, there are decreasing returns at the firm level but increasing
returns in the aggregate: the aggregate production function is given by

whereas the factors capital and labour receive the shares /I and v. In addition, the instan-
taneous utility function is given by

with x > 0. Finally, there is a time trend in log-productivity growth, which introduces
a factor y in some equations. The model in Section 3.8.1 is the special case

and hence,

Collecting the equations for Farmer's model, one obtains the following:

#
(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

Equation Log-linearized

25 Note that kt is chosen at date t, and thus it cannot depend on information dated t +1 or later. Regardless
of the timing convention for the subscript of k,, this has to be true. For this reason, the notation k, rather
than kt+i for the capital stock chosen at date t may be preferable.
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As before, use (ii) to replace nt in (iv), yielding

and as before, reduce the remaining equations to the two-equation system (3,45) and
(3.46), where now

3.8.6 Undetermined coefficients: A first try
One could try to solve this model with the method of undetermined coefficients just as
in Section 3.8.3. So, let us postulate the law of motion (3.48), (3.47) and see what we
get. As before, we get the characteristic equation (3.49) with the two solutions given by
equation (3.50). Since Hansen's model is contained as a special case, we may again get
one stable and one unstable root and then we can proceed to the complete solution as
above in Section 3.8.3. However, there is now no longer a guarantee that at most one
root is stable. In fact, the whole point of Farmer's investigation is to provide a model in
which both roots are stable. So, what should one do? Should one just pick one of the two
roots in some arbitrary manner? Or does one need to start from another law of motion?
We will come back to answer these questions in Section 3.8.8.

3.8.7 Blanchard-Kahn
It may be helpful to take a look first at what the Blanchard-Kahn method delivers. As
before, introduce <f> with equation (3.51), and write equations (3.45) and (3.46) as equa-
tion (3.52) with the matrices as in (3.53). We proceed in the same manner and get to
equation (3.55). If exactly one of the roots a>t is greater than unity, we can proceed as
before. But the interesting case is now that in which |o>; < I.26 In that case, we must

In fact, some roots may even be complex-valued. This can impose some restrictions: obviously, we
want the economic variables to be real-valued. The principle is that a real-valued characteristic polynomial
will always give rise to pairs of conjugate complex roots, if it gives rise to complex roots at all. It is then
important that either both roots of such a pair are carried along in the calculations or both are eliminated.
This usually assures that all economic variables remain real-valued.

26
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iterate all three equations "backwards". A simpler way to state this is that equation (3.52)
is already the correct forward dynamics of the model,

(3.56)

provided 4>t+i is such that kt does not depend on information dated t + 1 or beyond. Put
differently, fa+i must be such that

(3.57)

Check equation (3.54): since (X~1Z)\\ = (X~lZ)u = 0, equation (3.57) imposes no
restrictions on <pt+i. In particular, we see the following:

1. There is now a second, "artificial" state variable Xt. Obviously, while kt has always
been in the information set when choosing A.f+i, that information was "irrelevant"
before in Hansen's model: the only dynamic linkage between periods came from cap-
ital kt and from productivity Zt- Put differently: sometimes the state variables may
not be what you think they should be!

2. There is no longer some linear restriction on the relationship between €t+i and <j>t+i.
Thus, <pt+i can be "anything" (as long as it satisfies Et[</>t+\] — 0). In economic
terms, <pt+\ introduces sunspots, self-fulfilling prophecies or animal spirits. In partic-
ular, agents may "co-ordinate" on the random variable e^+i. 4>t+\ = t^t+i for some
coefficient T: any value for T is legitimate! This creates an endogenous sunspot.

3.8.8 Undetermined coefficients: A second try
With an eye on the Blanchard-Kahn approach, we see that we need as many state vari-
ables as there are stable roots. One interesting special case is the solution in which Xt+\
is predetermined, that is, already known27 at date t. That case can now be solved with
the method of undetermined coefficients by postulating the law of motion,

Note what happened compared to equations (3.48) and (3.47):
1. There is a second state variable, which we simply pick28 to be A.
2. The decision rule is now for Xt+\ rather than \t, since Xt+i is now postulated to be

predetermined.

27Blanchard and Kahn introduced the term "predetermined". Thus, both X(+i and k, are now predeter-
mined. This terminology can be useful but can also be confusing. A better way may be to think of some
variables to be known at date t and others at date t +1 etc., and to use the subscripts in a manner consistent
with that. Unfortunately, it can be the case that a linear combinations of some variables is already known
at date t, whereas the variables individually are only known at date t + 1.

28In general, some variables may turn out to be unsuitable candidates as additional state variables.
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The solution for the undetermined coefficients is simple: compare the equations
above with equation (3.56) to see that the coefficients are given directly by the appro-
priate coefficients in X~1Y. Also note that we implicitly picked 4>t+i to satisfy

or, with equation (3.54),

To introduce sunspots into the solution as well, one can proceed as follows. Distin-
guish between Xt+i, known at date t + 1, and Xe

t = Et[Xt+\}. In addition to the two
equations (3.45) and (3.46), we now have a third equation

(3.58)

Introduce a "sunspot" random variable 6t+i with Et[Ot+\] = 0. Regard \et as the addi-
tional state variable and postulate

and solve by the method of undetermined coefficients. Note that this is legitimate whether
we have one or two stable roots from (3.50): so we shall proceed with both in mind. Since
0t is not a fundamental shock, the scale of its coefficients will be undetermined. Thus,
normalize by setting 17x61 = 1 • That way,

is the forecast error in Xt. Comparison with equations (3.56) and (3.54) reveals that

Equation (3.58) turns out to deliver

To proceed further, distinguish between the saddle-point stable case and the case of two
stable roots:
I . If there is one stable and one unstable root, it turns out that

In words, even though a second state variable was added, the method of undetermined
coefficients eliminates it automatically. Furthermore, there will be tight relationship
between 6t+i and et+i.
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2. If there are two stable roots, r\\e^e and jj/f/e are no longer zero. Furthermore, because
(X~lZ)n = (X~lZ)i2 — 0. there no longer will be a tight relationship between
Ot+i and et+[, indicating the admissibility of a sunspot.
So, with the rule that one needs (at least) as many state variables as there are stable

roots, the method of undetermined coefficients can be used fairly simply for the case of
two stable roots as well, if one is only interested in the solution in which Xt+i is "prede-
termined" at date t. Introducing sunspots requires a little more work, and, at least for this
simple model, the Blanchard-Kahn approach seems clearer and more straightforward.
On the other hand, the method of undetermined coefficients seems more straightforward
for the saddle-point stable case. So it is useful to know about both.

3.8.9 Final remarks
The method of undetermined coefficients is particularly useful if the economy is saddle-
point stable. Sometimes, however, there are "too many" stable roots. The method of
undetermined coefficients can still be used then. Sunspot solutions may arise.

3.9 Appendix: Description of the MATLAB programs
Here we will describe some MATLAB programs to carry out the calculations for
Sections 3.4 and 3.6.

The easiest way to learn about these programs is to store all of them, start MAT-
LAB from the directory where they are stored and type "readme". This will execute the
readme.m file, providing some documentation.

As the time of writing, the newest version of the files is version 2. To see how version
2 files differ from the previous version, distributed until spring 1997, type "whatsnew"
within MATLAB, which executes the file whatsnew.m, printing relevant messages as
a result. To see quickly how these files work, start MATLAB and type "exampIO" to
calculate through example 0, which is the stochastic neoclassical growth model, or type
"exarnpH " to calculate through example 1, which is Hansen's (1985) real business cycle
model of Section 3.8.1, linearized slightly differently. There are more examples, enu-
merated as "exampINN", where NN stands for their number. To see what any particular
example, say, exampM .m, does, type "help exampH " within MATLAB. Use the example
files as templates for your own work. Alternatively, declare all required matrices and
type "do-it" to do all calculations. All the exampINN.m files call doJt.m at the very end.

The files which perform all the calculations (i.e. all the files aside from the exam-
pINN.m files, the readme.m file and the whatsnew.m file) are as follows:

doJt.m does it all, once all needed matrices are defined. This file calls all the other
programs. Thus, examining this file will tell you in which sequence all the other
calculations are performed,

enlarge.m allows you to manipulate letter sizes on plots and other properties of plots.
Useful for producing slides or plots for publication.

impresp.m calculates and shows impulse responses to shocks (see Section 3.6).
mom_out.m produces output. To be called after moments.™,
moments.m calculates second moment properties (see Section 3.6).
options.m sets the options for all programs. It is called by doJt.m and needs to be called

if one of the following routines is used in isolation.
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soLout.m produces output. To be called after solve.m.
solve.m solves for the recursive equilibrium law of motion with the theorems of

Section 3.4.

All files are extensively documented. Type, say, "help impresp" in MATLAB to get
more information on what the program impresp.m does. Note that these files set some
additional variables, which you may have used before: thus, be careful not to use names
appearing in the programs. If you have a question, please read this chapter and the doc-
umentation carefully. These files are provided as a free service, without technical sup-
port. However, if there are serious flaws or serious ways to improve on these programs,
I would like to hear about them. Feel free to copy and modify these files, and use them
at your own risk. There is absolutely no guarantee that they work as intended.


