Supplementary Notes on Chapter 2 of D. Romer's Advanced Macroeconomics Textbook (4th Edition)

Changsheng Xu \& Ming Yi

School of Economics, Huazhong University of Science and Technology
This version: Feb 2023

Calculus of variations（变分法）

－A field of mathematical analysis that deals with maximizing or minimizing functionals，which are mappings from a set of functions to the real numbers．
－Functionals are often expressed as definite integrals involving functions and their derivatives．（e．g．，the famous shortest（in time） path problem）
－The Euler－Lagrange equation provides a necessary condition for finding extrema．

Euler－Lagrange equation

Intuition：Finding the extrema of functionals is similar to finding the maxima and minima of functions．This tool provides a link between them to solve the problem．Consider the functional

$$
\begin{equation*}
J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) \mathrm{d} x \tag{1}
\end{equation*}
$$

where
－x_{1}, x_{2} are constants．
－$y(x)$ is twice continuously differentiable．
－$y^{\prime}(x)=\frac{\mathrm{d} y}{\mathrm{~d} x}$ ．
－$L\left(x, y(x), y^{\prime}(x)\right)$ is twice continuously differentiable with respect to all arguments x, y ，and y^{\prime} ．

Euler－Lagrange equation（Continued）

If $J[y]$ attains a local minimum at f ，and $\eta(x)$ is an arbitrary function that has at least one derivative and vanishes at the endpoints x_{1} and x_{2} ，then for any number $\varepsilon \rightarrow 0$ ，we must have

$$
\begin{equation*}
J[f] \leq J[f+\varepsilon \eta] \tag{2}
\end{equation*}
$$

Term $\varepsilon \eta$ is called the variation of the function f ．Now define

$$
\begin{equation*}
\Phi(\varepsilon)=J[f+\varepsilon \eta] . \tag{3}
\end{equation*}
$$

Since $J[y]$ has a local minimum at $y=f$ ，it must be the case that $\Phi(\varepsilon)$ has a minimum at $\varepsilon=0$ and thus

$$
\begin{equation*}
\Phi^{\prime}(0)=\left.\frac{\mathrm{d} \Phi}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} L}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} \mathrm{~d} x=0 \tag{4}
\end{equation*}
$$

Euler－Lagrange equation（Continued）

Now taking total derivative of $L\left[x, f+\varepsilon \eta,(f+\varepsilon \eta)^{\prime}\right]$ ，we have：

$$
\begin{equation*}
\frac{\mathrm{d} L}{\mathrm{~d} \varepsilon}=\frac{\partial L}{\partial y} \eta+\frac{\partial L}{\partial y^{\prime}} \eta^{\prime} . \tag{5}
\end{equation*}
$$

Inserting（5）into（4）gives us

$$
\begin{aligned}
0=\left.\int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} L}{\mathrm{~d} \varepsilon}\right|_{\varepsilon=0} & =\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) \mathrm{d} x \\
& =\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}\right) \mathrm{d} x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}} \\
& =\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}\right) \mathrm{d} x
\end{aligned}
$$

where the last lines uses integration by parts and the fact that η vanishes at x_{1} and x_{2} ．

Euler－Lagrange equation（Continued）

Now given

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}\right) \mathrm{d} x=0 \tag{6}
\end{equation*}
$$

the fundamental lemma of calculus of variations makes sure that

$$
\begin{equation*}
\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}=0 \tag{7}
\end{equation*}
$$

must hold！

Euler－Lagrange equation（Continued）

Now given

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}\right) \mathrm{d} x=0 \tag{6}
\end{equation*}
$$

the fundamental lemma of calculus of variations makes sure that

$$
\begin{equation*}
\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}=0 \tag{7}
\end{equation*}
$$

must hold！
－However，it is possible to attain（7）based on（6）without applying the lemma！

Euler－Lagrange equation（Continued）

Now given

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}\right) \mathrm{d} x=0 \tag{6}
\end{equation*}
$$

the fundamental lemma of calculus of variations makes sure that

$$
\begin{equation*}
\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}=0 \tag{7}
\end{equation*}
$$

must hold！
－However，it is possible to attain（7）based on（6）without applying the lemma！
－A special form of η ？

Euler－Lagrange equation（Continued）

Now given

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}\right) \mathrm{d} x=0 \tag{6}
\end{equation*}
$$

the fundamental lemma of calculus of variations makes sure that

$$
\begin{equation*}
\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f^{\prime}}\right)}{\mathrm{d} x}=0 \tag{7}
\end{equation*}
$$

must hold！
－However，it is possible to attain（7）based on（6）without applying the lemma！
－A special form of η ？
－How about $\eta(x)$ equals $-\left(x-x_{1}\right)\left(x-x_{2}\right)\left[\frac{\partial L}{\partial f}-\frac{\mathrm{d}\left(\frac{\partial L}{\partial f}\right)}{\mathrm{d} x}\right]$ for $x \in\left[x_{1}, x_{2}\right]$ and 0 for $x \notin\left[x_{1}, x_{2}\right]$ ？

Euler－Lagrange equation（Continued）

－How does（7）degenerate if y^{\prime} is not an argument of L ？
－Homework：based on equation（2．16）in your textbook，try to derive（2．17）．

To be continued．．．

