Applied Game Theory Graduate Program in Economics, HUST Ming Yi Fall 2018 HOMEWORK #1

- 1. Suppose $n \ge 2$ students are attending a course at HUST, in the current semester. For student *i*, her effort put into the course is $e_i \in (0, 100)$. We assume $e_1 > e_2 > \cdots > e_n$. The grade of each student is determined exclusively by the final exam of the course.
 - Each student has the opportunity to choose if she cheats in the exam, i.e., the action set for student i is $S_i = \{H, C\}$, where action H stands for behaving honestly in the exam (not cheating), and action C represents cheating in the exam.
 - If student *i* does not cheat in the exam, i.e., $s_i = H$, the exam leads to a *fair* result: Student *i* receives e_i as her grade.
 - If student i cheats in the exam, she will be caught by the proctor with probability λ ∈ [0,1] and a punishment of P > 0 points incurs; otherwise she successfully promote her grade by Q > 0 points. In other words, a cheating student i receives grade e_i + Q with probability (1 − λ), and gets grade e_i − P with probability λ. For simplicity, the grades are allowed to be negative or greater than 100.
 - Given the realizations of all grades, these numbers will be arranged in a descending order (from the highest to the lowest). If two students have the same grade, the student with greater effort is assigned with a higher ranking. Students only care about their rankings of grades. What is more, the students are risk-neutral individuals: Given s ∈ S, if player figures out that she will be the xth player with probability γ and be the yth player with probability (1 − γ), she will think of herself being arranged at the position with ranking γx + (1 − γ)y, i.e., her expected ranking.
 - It is thus straightforward to see that every student has incentive to *minimize* its expected ranking, which is allowed to be any number in \mathbb{R}_+ , rather than the set of all natural numbers, \mathbb{N} .
 - (a) Given $\lambda = 0$. Under what conditions C is a weakly dominant strategy for each student?

- (b) Given $\lambda = 0$. Could $s^* = (s_j^*)$ with $s_j^* = H$ for all $j = 1, \dots, n$ be a Nash equilibrium for any specific game described above? If yes, give an example of the specific game. If no, prove it.
- (c) Given $\lambda \in (0, 1]$. Can you find a threshold \overline{P} , such that it is a strictly dominant strategy for all students to play H, as long as $P > \overline{P}$?
- 2. Consider a model of noncooperative behavior in cooperative production with $k \ge 2$ individuals. The production function is

$$\pi(s_1,\cdots,s_k) = \sqrt{\sum_{i=1}^k s_i}$$

the payoff function for player i is $\mu_i(s_i, x_i) = x_i - s_i$, where x_i denotes player i's share of the production π . Specifically, the *proportional rule* is adopted here, i.e., player i gets:

$$x_i(s) = \begin{cases} 0, & \text{if } s = 0; \\ \frac{s_i}{\sum_{j=1}^k s_j} \pi(s), & \text{if } s > 0. \end{cases}$$
(1)

- (a) Show that at a pure Nash Equilibrium $s^* = (s_1^*, \cdots, s_k^*)$,
 - (i) $\sum_{j} s_{j}^{*} > 0;$ (ii) $s_{1}^{*} = \cdots = s_{k}^{*}.$
 - × __ __ __ __ __ __ __ __ __ __
- (b) Determine all pure Nash equilibria.
- (c) You should obtain a single pure Nash equilibrium of the form $s^* = (r, \dots, r)$ with r = r(k).
 - (iii) Show that $r \cdot k$ is increasing in k with limit 1.
 - (iv) Show that r is decreasing in k with limit 0.
- 3. Consider a Cournot game with two or more firms. In the following of the problem, let a > 0 and let the inverse demand function be given by

$$P(Q) = \begin{cases} a - Q, & \text{for } 0 \le Q \le a; \\ 0, & \text{for } Q > a. \end{cases}$$

Let $n \ge 2$ be the number of firms. Firm *i* has marginal cost $c_i \ge 0$. It chooses output $q_i \ge 0$ and incurs costs $c_i \cdot q_i$. Total or industry output is $Q = \sum_{j=1}^n q_j$. Firm *i*'s payoff (profit) is $\pi_i(q_1, \dots, q_n) = P(Q) \cdot q_i - c_i \cdot q_i$.

- (a) Suppose n = 2 and $c_1 \leq c_2$. Show that $q_1^* \geq q_2^*$ at each Nash equilibrium (q_1^*, q_2^*) .
- (b) Suppose n > 2 and $1 < c_1 \leq c_2 \leq \cdots \leq c_n$. Consider a Nash equilibrium (q_1^*, \cdots, q_n^*) . Show that
 - (i) $Q^* = \sum_j q_j^* < a.$
 - (ii) $q_1^* \ge q_2^* \ge \dots \ge q_n^*$.
- (c) For arbitrary n, show that there exists a unique Nash equilibrium (q_1^*, \dots, q_n^*) with $q_i^* > 0$ for all i.
- 4. Consider a 2-person zero-sum game with payoff matrix given in Table 1.

		Player 2					
		ℓ	m	r			
	U	1, -1	1, -1	-1, 1			
Player 1	M	1, -1	1, -1	1, -1			
	D	-1, 1	1, -1	1, -1			

Table 1. The payon matrix of a zero-sum game	Table	1:	The	payoff	matrix	of	a	zero-sum	game
--	-------	----	-----	--------	--------	----	---	----------	------

- (a) Give the definition of a maximin or prudent strategy of a player.
- (b) Determine the unique maximin strategy (in pure and mixed strategies) of player1. Explain it.
- (c) Using your answer in (b), find all Nash equilibria (in pure and mixed strategies).