Advanced Macroeconomics Fall 2018 Instructed by : Xu, Ma, and Yi Ph.D. Program in Economics, HUST Dynamic Programming HOMEWORK

1. We are trying to solve the following growth model:

Lifetime utility :
$$U = \sum_{t=0}^{\infty} (\beta)^t \log c_t,$$
 (1)

subject to
$$k_{t+1} = Ak_t^{\alpha} - c_t.$$
 (2)

(a) You are asked to do the "guess-and-verify" exercise. First, let us guess the value function and policy function of the Bellman Equation for the dynamic programming problem above as:

value function :
$$V(k_t) = C + D \log k_t$$
, (3)

policy function :
$$k_{t+1} = \pi(k_t) = \frac{\beta D}{1 + \beta D} A k_t^{\alpha},$$
 (4)

Then, you should prove the following statements

$$D = \frac{\alpha}{1 - \alpha\beta}, \quad C = \frac{\log[A(1 - \alpha\beta)]}{1 - \beta} + \frac{\alpha\beta\log(A\alpha\beta)}{(1 - \alpha\beta)(1 - \beta)}.$$

- (b) Given $\beta = 0.99$, $\alpha = 0.2$, A = 2. Based on your results in (a), draw the value function and policy function out, using *your favorite software*. What is the steady-state capital stock k^* and consumption c^* ?
- (c) Do the following steps (notice: make sure that you know why we are doing the following steps! If not, you should double-check the lecture notes and recall that the Bellman function actually constructs a contraction mapping!):
 - Define the maximum and minimum values k can take as a 90% deviation from the steady state value of k (we are not interested in all feasible value of k). Next, create a vector of length N = 1000 as the grid values k can take, bounded by the minimum and maximum values you have just calculated. Let us denote that vector k with elements $k(1) < k(2) < \cdots < k(N)$, with k(1) equal to the minimum value and k(N) equal to the maximum value.
 - Pick a small value ϵ as the convergence criterion (any number you think sensible). A number too small will take you forever to run the program and a number too

big will give you inaccurate estimates. Let the initial guess for the value function to be $V_0(k) \equiv 0$ for any k.

• For each $i = 1, \dots, N$, find the k(j) that maximizes $\log [2k(i)^{0.2} - k(j)]$ (recall that $V_0 \equiv 0$). Make sure that you do not pick a k(j) that makes consumption negative, for all $i = 1, \dots, N$. Then keep the maximum value as $V_1(i)$ and memorize the "position" j (i.e., which grid value of capital you have picked above while solving the maximization problem).

After you have done the maximization problem above for all $i = 1, \dots, N$, you should have a $N \times 1$ vector of maximum values V_1 and a $N \times 1$ vector of policy π_1 , which contains the "position" of the grid value of capital you have picked. The policy π_1 tells you what next period capital you should pick given the current capital: $k_{t+1} = \pi_1(k_t)$.

• For each $i = 1, \dots, N$, find the k(j) that maximizes $\log[2k(i)^{0.2} - k(j)] + \beta V_1(j)$. Then keep the maximum value as $V_2(i)$ and memorize the "position" j (i.e., which grid value of capital you have picked above while solving the maximization problem).

After you have done the maximization problem above for all $i = 1, \dots, N$, you should have a $N \times 1$ vector of maximum values V_2 and a $N \times 1$ vector of policy π_2 , which contains the "position" of the grid value of capital you have picked. The policy π_2 tells you what next period capital you should pick given the current capital: $k_{t+1} = \pi_2(k_t)$.

• Repeat the above step many times, until

$$\max_{j} \{ |V_n(j) - V_{n-1}(j)| \} < \epsilon.$$
(5)

That is, the iterative algorithm continues until the largest absolute difference between the corresponding elements for the two value functions is less than ϵ .

Your program has converged to the fixed point!

Now, treat V_n as your value function and π_n as your policy function obtained from the iterative method above. Plot the two functions with the grid values of k on the *x*-axis. Are the functions the same as those you found in (a)?

- (d) Repeat (b) with a lower discount rate $\beta = 0.8$. How does the slope of the policy function change? What does that mean *in words*?
- (e) Repeat (b) with the CRRA utility function $\mu(c_t) = \frac{c_t^{0.5} 1}{0.5}$ and $\beta = 0.99$. What difference does the new functional form make?
- (f) Repeat (b) with a bigger $\epsilon = 0.001$. Can you find any differences?